Abstract

Most of the laser applications in medicine and biology involve thermal effects. The laser-tissue thermal interaction has therefore received more and more attentions in recent years. However, previous works were mainly focused on the case of laser heating on normal tissues (37 °C or above). To date, little is known on the mechanisms of laser heating on the frozen biological tissues. Several latest experimental investigations have demonstrated that lasers have great potentials in tissue cryopreservation. But the lack of theoretical interpretation limits its further application in this area. The present paper proposes a numerical model for the thawing of biological tissues caused by laser irradiation. The Monte Carlo approach and the effective heat capacity method are, respectively, employed to simulate the light propagation and solid-liquid phase change heat transfer. The proposed model has four important features: (1) the tissue is considered as a nonideal material, in which phase transition occurs over a wide temperature range; (2) the solid phase, transition phase, and the liquid phase have different thermophysical properties; (3) the variations in optical properties due to phase-change are also taken into consideration; and (4) the light distribution is changing continually with the advancement of the thawing fronts. To this end, 15 thawing-front geometric configurations are presented for the Monte Carlo simulation. The least-squares parabola fitting technique is applied to approximate the shape of the thawing front. And then, a detailed algorithm of calculating the photon reflection/refraction behaviors at the thawing front is described. Finally, we develop a coupled light/heat transport solution procedure for the laser-induced thawing of frozen tissues. The proposed model is compared with three test problems and good agreement is obtained. The calculated results show that the light reflectance/transmittance at the tissue surface are continually changing with the progression of the thawing fronts and that lasers provide a new heating method superior to conventional heating through surface conduction because it can achieve a uniform volumetric heating. Parametric studies are performed to test the influences of the optical properties of tissue on the thawing process. The proposed model is rather general in nature and therefore can be applied to other nonbiological problems as long as the materials are absorbing and scattering media.

1.
Niemz
,
M. H.
, 2002,
Laser-Tissue Interactions: Fundamentals and Applications
2nd revision ed.,
Springer-Verlag
, Berlin.
2.
Halldorsson
,
T.
, and
Langerholc
,
J.
, 1978, “
Thermodynamic Analysis of Laser Irradiation of Biological Tissue
,”
Appl. Opt.
0003-6935,
17
(
24
), pp.
3948
3958
.
3.
Cummins
,
L.
, and
Nauenberg
,
M.
, 1983, “
Thermal effects of laser radiation in biological tissue
,”
Biophys. J.
0006-3495,
42
, pp.
99
102
.
4.
Welch
,
A. J.
, 1984, “
The thermal response of laser irradiated tissue
,”
IEEE J. Quantum Electron.
0018-9197,
20
(
12
), pp.
1471
1481
.
5.
Sliney
,
D. H.
, 1985, “
Laser-tissue interactions
,”
Clin. Chest Med.
0272-5231,
6
(
2
), pp.
203
208
.
6.
Svaasand
,
L. O.
,
Gomer
,
C. J.
, and
Profio
,
A. E.
, 1989, “
Laser-induced hyperthermia of ocular tumors
,”
Appl. Opt.
0003-6935,
28
(
12
), pp.
2280
2287
.
7.
Grossweiner
,
L. I.
,
AI-Karmi
,
A. M.
,
Johnson
,
P. W.
, and
Brader
,
K. R.
, 1990, “
Modeling of tissue heating with a pulsed Nd:YAG laser
,”
Lasers Surg. Med.
0196-8092,
10
, pp.
295
302
.
8.
McKenzie
,
A. L.
, 1990, “
Physics of thermal processes in laser-tissue interaction
”,
Phys. Med. Biol.
0031-9155,
35
(
9
), pp.
1175
1209
.
9.
Panjehpour
,
M.
,
Wilke
,
A. V.
,
Frazier
D. L.
, and
Overholt
,
B. F.
, 1991, “
Nd:YAG laser hyperthermia treatment of rat mammary adenocarcinoma in conjunction with surface cooling
,”
Lasers Surg. Med.
0196-8092,
11
, pp.
356
362
.
10.
Sagi
,
A.
,
Shitzer
A.
,
Katzir
,
A.
, and
Akselrod
,
S.
, 1992, “
Heating of biological tissue by laser irradiation: theoretical model
”,
Opt. Eng.
0091-3286,
31
(
7
), pp.
1417
1423
.
11.
Torres
,
J. H.
,
Motamedi
,
M.
,
Pearce
J. A.
, and
Welch
,
A. J.
, 1993, “
Experimental evaluation of mathematical models for predicting the thermal response of tissue to laser irradiation
,”
Appl. Opt.
0003-6935,
32
(
4
), pp.
597
606
.
12.
Beacco
,
C. M.
,
Mordon
,
S. R.
, and
Brunetaud
,
J. M.
, 1994, “
Development and experimental in vivo validation of mathematical modeling of laser coagulation
,”
Lasers Surg. Med.
0196-8092,
14
, pp.
362
373
.
13.
Sturesson
,
C.
, and
Andersson-Engels
,
S.
, 1995, “
A mathematical model for predicting the temperature distribution in laser-induced hyperthermia: Experimental evaluation and applications
,”
Phys. Med. Biol.
0031-9155,
40
, pp.
2037
2052
.
14.
Glenn
,
T. N.
,
Rastegar
,
S.
, and
Jacques
,
S. L.
, 1996, “
Finite element analysis of temperature controlled coagulation in laser-irradiation tissue
,”
IEEE Trans. Biomed. Eng.
0018-9294,
43
(
1
), pp.
79
86
.
15.
Welch
,
A. J.
, and
Gardner
,
C. M.
, 1997, “
Monte Carlo model for determination of the role of heat generation in laser-irradiated tissue
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
489
495
.
16.
Director
,
L. B.
,
Frid
,
S. E.
,
Mendeleev
,
V. Y.
, and
Scovorod’ko
,
S. N.
, 1998, “
Computer simulation of heat and mass transfer in tissue during high-intensity long-range laser irradiation
,”
Ann. N.Y. Acad. Sci.
0077-8923,
858
, pp.
56
65
.
17.
Olsrud
,
J.
,
Wirestam
,
R.
,
Persson
,
B. R. R.
, and
Tranberg
,
Karl-G.
, 1999, “
Simplified treatment planning for interstitial laser thermotherapy by disregarding light transport: A numerical study
,”
Lasers Surg. Med.
0196-8092,
25
, pp.
304
314
.
18.
Shah
,
R. K.
,
Nemati
,
B.
,
Wang
,
L. V.
, and
Shapshay
,
S. M.
, 2002, “
Optical-thermal simulation of tonsillar tissue irradiation
,”
Lasers Surg. Med.
0196-8092,
28
, pp.
313
319
.
19.
Zhou
,
J.
, and
Liu
,
J.
, 2004, “
Numerical study on 3-D light and heat transport in biological tissues embedded with large blood vessels during laser-induced thermotherapy
,”
Numer. Heat Transfer, Part A
1040-7782,
45
(
5
), pp.
415
449
.
20.
Welch
,
A. J.
, and
van Gemert
,
M. J. C.
, eds., 1995,
Optical-Thermal Response of Laser-Irradiated Tissue
,
Plenum Press
, New York.
21.
Fowler
,
A. J.
, and
Toner
,
M.
, 1998, “
Prevention of hemolysis in rapidly frozen erythrocytes by using a laser pulse
”,
Ann. N.Y. Acad. Sci.
0077-8923,
858
, pp.
245
252
.
22.
Shannon
,
M. A.
,
Rubinsky
,
B.
, and
Russo
,
R. E.
, 1994, “
Detecting laser-induced phase change at the surface of solids via latent heat of melting with a photothermal deflection technique
,”
J. Appl. Phys.
0021-8979,
75
(
3
), pp.
1473
1485
.
23.
Basu
,
B.
, and
Date
,
A. W.
, 1990, “
Numerical study of steady state and transient laser melting problems-I. characteristics of flow field and heat transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
33
(
6
), pp.
1149
1163
.
24.
Basu
,
B.
, and
Date
,
A. W.
, 1990, “
Numerical study of steady state and transient laser melting problems-I. effects of the process parameters
”,
Int. J. Heat Mass Transfer
0017-9310,
33
(
6
), pp.
1165
1175
.
25.
Comini
,
G.
, and
del Giudice
,
S.
, 1976, “
Thermal aspects of cryosurgery
,”
ASME J. Heat Transfer
0022-1481,
98
, pp.
543
549
.
26.
Rabin
,
Y.
, and
Shitzer
,
A.
, 1998, “
Numerical solution of the multidimensional freezing problem during cryosurgery
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
32
37
.
27.
Rabin
,
Y.
, and
Shitzer
,
A.
, 1997, “
Combined solution of the inverse Stefan problem for successive freezing/ thawing in nonideal biological tissues
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
146
152
.
28.
Cheong
,
W. F.
,
Prahl
,
S. A.
, and
Welch
,
A. J.
, 1990, “
A review of the optical properties of biological tissues
,”
IEEE J. Quantum Electron.
0018-9197,
26
(
12
), pp.
2166
2185
.
29.
Ishimaru
,
A.
, 1978,
Wave Propagation and Scattering in Random Media
,
Academic Press
, New York.
30.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd Edition,
Academic Press
, New York.
31.
Wilson
,
B. C.
, and
Adam
,
G.
, 1983, “
A Monte Carlo model of the absorption and flux distribution of light in tissue
,”
Med. Phys.
0094-2405,
10
(
6
), pp.
824
830
.
32.
Flock
,
S. T.
,
Patterson
,
M. S.
,
Wilson
,
B. C.
, and
Wyman
,
D. R.
, 1989a, “
Monte Carlo modeling of light propagation in highly scattering tissues-I: model predications and comparison with diffusion theory
”,
IEEE Trans. Biomed. Eng.
0018-9294,
36
(
12
), pp.
1162
1168
.
33.
Flock
,
S. T.
,
Wilson
,
B. C.
, and
Patterson
,
M. S.
, 1989b, “
Monte Carlo modeling of light propagation in highly scattering tissues-II: comparison with measurements in phantoms
”,
IEEE Trans. Biomed. Eng.
0018-9294,
36
(
12
), pp.
1169
1173
.
34.
Keijzer
,
M.
,
Jacques
,
S. L.
,
Prahl
,
S. A.
, and
Welch
,
A. J.
, 1989, “
Light distribution in artery tissue: Monte Carlo simulations for finite-diameter laser beams
,”
Lasers Surg. Med.
0196-8092,
9
, pp.
148
154
.
35.
Hasegawa
,
Y.
,
Yamada
,
Y.
,
Tamura
,
M.
, and
Nomura
,
Y.
, 1991, “
Monte Carlo simulation of light transmission through living tissues
,”
Appl. Opt.
0003-6935,
30
(
31
), pp.
4515
4520
.
36.
Wang
,
L.
,
Jacques
,
S. L.
, and
Zheng
,
L.
, 1995, “
MCML-Monte Carlo modeling of light transport in multi-layered tissues
,”
Comput. Methods Programs Biomed.
0169-2607,
47
, pp.
131
146
.
37.
Samarskii
,
A. A.
,
Vabishchevich
,
P. N.
,
Iliev
,
O. P.
, and
Churbanov
,
A. G.
, 1993, “
Numerical simulation of convection/diffusion phase change problems-a review
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
17
), pp.
4095
4106
.
38.
Voller
,
V. R.
, 1997, “
An overview of numerical methods for solving phase change problems
,” in
Advances in Numerical Heat Transfer
,
W. J.
MinKowycz
and
E. M.
Sparrow
, eds.,
Taylor & Francis
, Washington,
1
, pp.
341
380
.
39.
Bonacina
,
C.
,
Comini
,
G.
,
Fasano
,
A.
, and
Primicerio
,
M.
, 1973, “
Numerical solution of phase-change problems
,”
Int. J. Heat Mass Transfer
0017-9310,
16
, pp.
1825
1832
.
40.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
, New York.
41.
Rabin
,
Y.
, and
Korin
,
E.
, 1993, “
An efficient numerical solution for the multidimensional solidification (or melting) problem using a microcomputer
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
3
), pp.
673
683
.
42.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
,
Clarendon Press
, Oxford, pp.
285
286
.
43.
Kent
,
F. P.
, and
Williams
,
D.
, 1974, “
Optical properties of water in the near infrared
,”
J. Opt. Soc. Am.
0030-3941,
64
(
8
), pp.
1107
1110
.
44.
Warren
,
S. G.
, 1984, “
Optical constants of ice from the ultraviolet to the microwave
,”
Appl. Opt.
0003-6935,
23
(
8
), pp.
1206
1225
.
45.
Gage
,
A. A.
, and
Baust
,
J.
, 1998, “
Mechanisms of tissue injury in cryosurgery
,”
Cryobiology
0011-2240,
37
, pp.
171
186
.
46.
Karlsson
,
J. O. M.
, and
Toner
,
M.
, 1996, “
Long-term storage of tissues by cryopreservation: critical issues
”,
Biomaterials
0142-9612,
17
(
3
), pp.
243
256
.
47.
Vorotilin
,
A. M.
,
Zinchenko
,
A. V.
, and
Moiseyew
,
V. A.
, 1991, “
Cell injury at the stage of thawing
,”
Cryoletters
,
12
, pp.
77
86
.
48.
Zhang
,
Y. T.
, and
Liu
,
J.
, 2002, “
Numerical study on three-region thawing problem during cryosurgical re-warming
,”
Med. Eng. Phys.
1350-4533,
24
(
4
), pp.
265
277
.
49.
Wang
,
L.-H.
, and
Jacques
,
S. L.
, 1992, “
Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Standard C
,”
University of Texas M.D. Anderson Cancer Center
, Houston, TX.
You do not currently have access to this content.