Computational investigations of flow mixing and oxygen transfer characteristics in an intravenous membrane oxygenator (IMO) are performed by direct numerical simulations of the conservation of mass, momentum, and species equations. Three-dimensional computational models are developed to investigate flow-mixing and oxygen-transfer characteristics for stationary and pulsating balloons, using the spectral element method. For a stationary balloon, the effect of the fiber placement within the fiber bundle and the number of fiber rings is investigated. In a pulsating balloon, the flow mixing characteristics are determined and the oxygen transfer rate is evaluated. For a stationary balloon, numerical simulations show two well-defined flow patterns that depend on the region of the IMO device. Successive increases of the Reynolds number raise the longitudinal velocity without creating secondary flow. This characteristic is not affected by staggered or non-staggered fiber placement within the fiber bundle. For a pulsating balloon, the flow mixing is enhanced by generating a three-dimensional time-dependent flow characterized by oscillatory radial, pulsatile longitudinal, and both oscillatory and random tangential velocities. This three-dimensional flow increases the flow mixing due to an active time-dependent secondary flow, particularly around the fibers. Analytical models show the fiber bundle placement effect on the pressure gradient and flow pattern. The oxygen transport from the fiber surface to the mean flow is due to a dominant radial diffusion mechanism, for the stationary balloon. The oxygen transfer rate reaches an asymptotic behavior at relatively low Reynolds numbers. For a pulsating balloon, the time-dependent oxygen-concentration field resembles the oscillatory and wavy nature of the time-dependent flow. Sherwood number evaluations demonstrate that balloon pulsations enhance the oxygen transfer rate, even for smaller flow rates.

1.
Anderson
,
H.
,
Stremple
,
C.
, and
Shapiro
,
M.
, 1993, “
Extracorporeal Life Support for Adult Cardiorespiratory Failure
,”
Surgery (St. Louis)
0039-6060,
141
, pp.
161
173
.
2.
Gillie
,
J. D.
, and
Bagniwieski
,
A. M.
, 1976, “
Ten Years of Use of Extracorporeal Membrane Oxygenation (ECMO) in the Treatment of Acute Respiratory Insufficiency (ARI)
,”
ASAIO Trans.
0889-7190,
22
, pp.
102
109
.
3.
Ichiba
,
S.
, and
Bartlett
,
R. H.
, 1996, “
Current Status of Extracorporeal Membrane Oxygenation for Severe Respiratory Failure
,”
Artif. Organs
0160-564X,
20
(
2
), pp.
120
123
.
4.
Kalobow
,
T.
, 1991, “
Extracorporeal Respiratory Gas Exchange: A Look Into the Future
,”
ASAIO Trans.
0889-7190,
37
, pp.
2
3
.
5.
Sinard
,
J. M.
, and
Bartlett
,
R. H.
, 1990, “
Extracorporeal Life Support in Critical Care Medicine
,”
J. Crit. Care
0883-9441,
5
, pp.
265
278
.
6.
Trough
,
R. D.
, 1992, “
Randomized Controlled Trials: Lessons from ECMO
,”
Clin. Res.
0009-9279,
40
, pp.
519
527
.
7.
Zapol
,
W. M.
,
Snider
,
M. T.
, and
Hill
,
J. D.
, 1979, “
Extracorporeal Membrane Oxygenation in Severe Acute Respiratory Failure: A Randomized Prospective Study
,”
J. Am. Med. Assoc.
0098-7484,
242
, pp.
193
196
.
8.
Dierickx
,
P. W.
,
De Somer
,
F.
,
De Wachter
,
D. S.
,
Van Nooten
,
G.
, and
Verdonck
,
P. R.
, 2000, “
Hydrodynamic Characteristics of Artificial Lungs
,”
ASAIO J.
1058-2916,
46
, pp.
532
535
.
9.
Federspiel
,
W. J.
,
Hewitt
,
T.
,
Hout
,
M. S.
,
Walters
,
F. R.
,
Lund
,
L. W.
,
Sawzik
,
P. J.
,
Reeder
,
G. D.
Boravetz
,
H. S.
, and
Hattler
,
B. G.
, 1996, “
Recent Progress in Engineering The Pittsburgh Intravenous Membrane Oxygenator
,”
ASAIO J.
1058-2916,
42
, pp.
M435
M442
.
10.
Federspiel
,
W. J.
,
Sawzik
,
P. J.
,
Boravetz
,
H. S.
,
Reeder
,
G. D.
, and
Hattler
,
B. G.
, 1996, “
Temporary Support of the Lungs-the Artificial Lung
,” in
The Transplantation and Replacement of Thoracic Organs
.
D. K. C.
Cooper
,
L. W.
Miller
, and
G. A.
Patterson
, eds.,
Kluwer Academic
, Boston, pp.
717
728
.
11.
Federspiel
,
W. J.
,
Hout
,
M. S.
,
Hewitt
,
T. J.
,
Lund
,
L. W.
,
Heinrich
,
S. A.
,
Litwak
,
P.
,
Walters
,
F. R.
,
Reeder
,
G. D.
,
Boravetz
,
H. S.
, and
Hattler
,
B. G.
, 1997, “
Development of a Low Flow Resistance Intravenous Oxygenator
,”
ASAIO J.
1058-2916,
43
, pp.
M725
M730
.
12.
Federspiel
,
W. J.
,
Golob
,
J. F.
,
Merrill
,
T. L.
,
Lund
,
L. W.
,
Bultman
,
J. A.
,
Frankowski
,
B. J.
,
Watach
,
M.
,
Litwak
,
K.
, and
Hattler
,
B. G.
, 2000, “
Ex vivo Testing of the Intravenous Membrane Oxygenator
,”
ASAIO J.
1058-2916,
46
, pp.
261
267
.
13.
Federspiel
,
W. J.
,
Hewitt
,
T. J.
, and
Hattler
,
B. G.
, 2000, “
Experimental Evaluation of a Model for Oxygen Exchange in a Pulsating Intravascular Artificial Lung
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
160
167
.
14.
Fiore
,
G. B.
,
Costantino
,
M. L.
,
Funero
,
R.
, and
Montevecchi
,
F. M.
, 2000, “
The Pumping Oxygenator: Design Criteria and First In Vitro Results
,”
Artif. Organs
0160-564X,
24
(
10
), pp.
797
807
.
15.
Hattler
,
B. G.
,
Johnson
,
P. C.
,
Sawzik
,
P. J.
,
Shaffer
,
F. D.
,
Klain
,
M.
,
Lund
,
L. W.
,
Reeder
,
G. D.
,
Walters
,
F. R.
,
Goode
,
J. S.
, and
Borovetz
,
H. S.
, 1992, “
Respiratory Dialysis: A New Concept in Pulmonary Support
,”
ASAIO J.
1058-2916,
38
, pp.
322
325
.
16.
High
,
K. M.
,
Snider
,
M. T.
,
Richard
,
R.
,
Russell
,
G. B.
,
Stene
,
J. K.
,
Campbell
,
D. B.
,
Aufiero
,
T. X.
, and
Thieme
,
G. A.
, 1992, “
Clinical Trials of an Intravenous Oxygenator in Patients With Adult Respiratory Distress Syndrome
,”
Anesthesiology
0003-3022,
77
, pp.
856
863
.
17.
Kanamori
,
T.
,
Niwa
,
M.
,
Kawakami
,
H.
,
Mori
,
Y.
,
Nakaoga
,
S.
,
Haraya
,
K.
, and
Shinbo
,
T.
, 2000, “
Estimate of Gas Transfer Rates of an Intravascular Membrane Oxygenator
,”
ASAIO J.
1058-2916,
46
, pp.
612
619
.
18.
Makarewicz
,
A. J.
,
Mockros
,
L. F.
, and
Mavroudis
,
C.
, 1996, “
New Design for a Pumping Artificial Lung
,”
ASAIO J.
1058-2916,
46
, pp.
M615
M619
.
19.
Mortensen
,
J. D.
, 1987, “
An Intravenacabal Blood Gas Exchange (IVCBGE) Device, a Preliminary Report
,”
ASAIO Trans.
0889-7190,
33
, pp.
570
573
.
20.
Pennati
,
G.
,
Fiore
,
G. B.
,
Inzoli
,
F.
,
Mastrantonio
,
F.
,
Galavotti
,
D.
, and
Fini
,
M.
, 1998, “
Mass Transfer Efficiency of a Commercial Hollow Fibre Oxygenator during six-hour in vitro Perfusion with Steady and with Pulsatile Blood Flow
,”
Int. J. Artif. Organs
0391-3988,
21
, pp.
97
106
.
21.
Grodins
,
F. S.
, and
Yamashiro
,
S. M.
, 1978,
Respiratory Function of the Lung and its Control
,
Macmillan
, New York.
22.
Sutera
,
S. P.
, 1977, “
Flow-Induced Trauma in Blood Cells
,”
Circulation
0009-7322,
41
, pp.
2
8
.
23.
Weibel
,
E. R.
,
Federspiel
,
W. J.
, and
Freider-Doffey
,
F.
, 1993, “
Morphometric Model for Pulmonary Diffusing Capacity
,”
Respir. Physiol.
0034-5687,
93
, pp.
124
149
.
24.
Vaslef
,
S. N.
,
Cook
,
K. E.
,
Leonard
,
R. J.
,
Mockros
,
L. F.
, and
Anderson
,
R. W.
, 1994, “
Design and Evaluation of a New Pressure Loss, Implantable Artificial Lung
,”
ASAIO J.
1058-2916,
40
, pp.
M522
M526
.
25.
Fazzalari
,
F. L.
,
Montoya
,
J. P.
,
Bonnell
,
M. R.
,
Blizz
,
D. W.
,
Hirschl
,
R. B.
, and
Bartlett
, 1994, “
The Development of an Implantable Artificial Lung
,”
ASAIO J.
1058-2916,
40
, pp.
M728
M731
.
26.
Luzsa
,
G.
, 1974,
X-Ray Anatomy of the Vascular System
, Philadelphia, Lippincott.
27.
Mortensen
,
J. D.
, 1992, “
Intravascular Oxygenator: A New Alternative Method for Augmenting Blood Gas Transfer in Patients with Acute Respiratory Failure
,”
Artif. Organs
0160-564X,
16
, pp.
75
82
.
28.
Conrad
,
S. A.
,
Bagley
,
A.
,
Bagley
,
B.
, and
Schaap
,
R. N.
, 1994, “
Major Findings from the Clinical Trials of the Intravascular Oxygenator
,”
Artif. Organs
0160-564X,
18
, pp.
846
863
.
29.
Hattler
,
B. G.
,
Reeder
,
G. D.
,
Sawzik
,
P. J.
,
Lund
,
L. W.
,
Walters
,
F. R.
,
Shah
,
A. S.
,
Rawleigh
,
J.
,
Goode
,
J. S.
,
Klain
,
M.
, and
Borovetz
,
H. S.
, 1994, “
Development of an Intravenous Membrane Oxygenator (IMO): Enhanced Intravenous Gas Exchange Through Convective Mixing of Blood Around Hollow Fiber Membranes
,”
Artif. Organs
0160-564X,
18
, pp.
806
812
.
30.
Reeder
,
G. D.
,
Hattler
,
B. G.
,
Rawleigh
,
J.
,
Walters
,
F. R.
,
Sawzik
,
P. J.
,
Lund
,
L. W.
,
Klain
,
M.
,
Goode
,
J. S.
, and
Borovetz
,
H. S.
, 1993, “
Currrent Progess in the Development of an Intravenous Membrane Oxygenator
,”
ASAIO J.
1058-2916,
39
, pp.
461
465
.
31.
Hout
,
M. S.
,
Hattler
,
B. G.
, and
Federspiel
,
W. J.
, 2000, “
Validation of a Model for Flow-Dependent Carbon Dioxide Exchange in Artificial Lungs
,”
Artif. Organs
0160-564X,
24
(
2
), pp.
114
118
.
32.
Macha
,
M.
,
Federspiel
,
W. J.
,
Lund
,
L. W.
,
Sawzik
,
P. J.
,
Litwak
,
P.
,
Walters
,
F. R.
,
Reeder
,
G. D.
,
Borovetz
,
H. S.
, and
Hattler
,
B. G.
, 1996, “
Acute In Vivo Studies of the Pittsburgh Intravenous Membrane Oxygenator
,”
ASAIO J.
1058-2916,
42
, pp.
M609
M615
.
33.
Federspiel
,
W. J.
, and
Hattler
,
B. G.
, 1996, “
Sweep Gas Flowrate and CO2 Exchange in Artificial Lungs
,”
Artif. Organs
0160-564X,
20
(
9
), pp.
1050
1052
.
34.
Private communications.
35.
Aref
,
H.
, 1991, “
Stochastic Particle Motion in Laminar Flows
,”
Phys. Fluids A
0899-8213,
A3
, pp.
1009
1016
.
36.
Jones
,
S.
, 1991, “
Enhancement of Mixing by Chaotic Advection
,”
Phys. Fluids A
0899-8213,
A3
, pp.
1081
1086
.
37.
Ottino
,
J.
, 1989,
The Kinematics of Mixing: Stretching, Chaos and Transport
,
Cambridge University Press
, Cambridge, England.
38.
Amon
,
C. H.
,
Guzmán
,
A. M.
, and
Morel
,
B.
, 1996, “
Lagrangian Chaos, Eulerian Chaos, and Mixing Enhancement
,”
Phys. Fluids
1070-6631,
8
(
5
), pp.
1192
1206
.
39.
Guzmán
,
A. M.
, and
Amon
,
C. H.
, 1996, “
Dynamical Flow Characterization of Transitional and Chaotic Regimes in Converging-Diverging Channels
,”
J. Fluid Mech.
0022-1120,
321
, pp.
25
57
.
40.
Guzmán
,
A. M.
, and
Amon
,
C. H.
, 1998, “
Convective Heat Transfer and Flow Mixing in Converging-Diverging Channel Flows
,”
Proceedings of the ASME Heat Transfer Division
, Los Angeles,
ASME
, New York, Vol.
1
, HTD-Vol.
361-1
, pp.
61
68
.
41.
Amon
,
C. H.
, 1995, “
Spectral Element-Fourier Method for Unsteady Forced Convective Heat Transfer in Complex Geometry Flows
,” AIAA
J. Thermophys. Heat Transfer
0887-8722,
9
(
2
), pp.
247
253
.
42.
Canuto
,
C.
,
Hussaini
,
M.
,
Quarteroni
,
A.
, and
Zang
,
T.
, 1987,
Spectral Methods in Fluid Dynamics
,
Springer-Verlag
, Berlin.
43.
Patera
,
A. T.
, 1984, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
0021-9991,
54
(
3
), pp.
468
488
.
44.
Guzmán
,
A. M.
, and
Amon
,
C. H.
, 2000, “
Flow and Mass Transfer Characteristics of an Intravenous Membrane Oxygenator: A Computational Study
,”
Journal of Computer Methods in Biomechanics and Biomedical Engineering
,
3
, pp.
147
166
.
45.
Guzmán
,
A. M.
,
Escobar
,
R. A.
,
Loyola
,
H. J.
and
Amon
,
C. H.
, 2000a, “
Pressure Drop and Mass Transfer in an Intravenous Membrane Oxygenator in a Pulsatile Flow regime
,”
ASME 34th Heat Transfer Conference 2000
, Pittsburgh, NHTC 2000-12205.
46.
Guzmán
,
A. M.
Escobar
,
R. A.
, and
Amon
,
C. H.
, 2000b, “
Effect of Curved Boundaries of an Intravenous Membrane Oxygenator on the Fluid Dynamics and Mass Transfer Characteristics
,”
Advances in Heat and Mass Transfer in Biotechnology-2000
,
E. P.
Scott
,
J. C.
Bischof
, eds., HTD-Vol.
368
/BED-Vol.
47
,
ASME
, New York, pp.
121
122
.
47.
Escobar
,
R. A.
, 1999, “
Estudio, Análisis y Discusión del Flujo Laminar-transicional en un Modelo Computacional de Oxygenador Sanguíneo Intravenoso
,” Mechanical Engineer thesis, Universidad de Santiago de Chile, Chile.
48.
Loyola
,
H. J.
, 2000, “
Efecto de la Configuración Espacial y Numérica de las Microfibras en las Características del Flujo en un Oxigenador de Membrana Intravenoso
,” Mechanical Engineer thesis, Universidad de Santiago de Chile, Chile.
You do not currently have access to this content.