Cochlear outer hair cells are crucial for active hearing. These cells have a unique form of motility, named electromotility, whose main features are the cell’s length changes, active force production, and nonlinear capacitance. The molecular motor, prestin, that drives outer hair cell electromotility has recently been identified. We reveal relationships between the active energy produced by the outer hair cell molecular motors, motor effectiveness, and the capacitive properties of the cell membrane. We quantitatively characterize these relationships by introducing three characteristics: effective capacitance, zero-strain capacitance, and zero-resultant capacitance. We show that zero-strain capacitance is smaller than zero-resultant capacitance, and that the effective capacitance is between the two. It was also found that the differences between the introduced capacitive characteristics can be expressed in terms of the active energy produced by the cell’s molecular motors. The effectiveness of the cell and its molecular motors is introduced as the ratio of the motors’ active energy to the energy of the externally applied electric field. It is shown that the effectiveness is proportional to the difference between zero-strain and zero-resultant capacitance. We analyze the cell and motor’s effectiveness within a broad range of cellular parameters and estimate it to be within a range of 12%–30%.

1.
Geisler
,
C. D.
, 1998,
From Sound to Synapse
,
Oxford University Press
, New York.
2.
Dallos
,
P.
, 1996, “
Overview: Cochlear Neurobiology
,” in
The Cochlea
,
P.
Dallos
,
A. N.
Popper
, and
R. R.
Fay
, eds.,
Springer-Verlag
, New York,
1
43
.
3.
Santos-Sacchi
,
J.
, 2003, “
New Tunes from Corti’s Organ: The Outer Hair Cell Boogie Rules
,”
Curr. Opin. Neurobiol.
0959-4388,
13
,
459
468
.
4.
Brownell
,
W. E.
,
Bader
,
C. R.
,
Bertrand
,
D.
, and
de Ribaupierre
,
Y.
, 1985, “
Evoked Mechanical Responses of Isolated Cochlear Outer Hair Cells
,”
Science
0036-8075,
227
,
194
196
.
5.
Brownell
,
W. E.
,
Spector
,
A. A.
,
Raphael
,
R. M.
, and
Popel
,
A. S.
, 2001, “
Micro- and Nanomechanics of the Cochlear Outer Hair Cell
,”
Annu. Rev. Biomed. Eng.
1523-9829,
3
,
162
194
.
6.
Hallworth
,
R.
, 1997, “
Modulation of OHC Force Generation and Stiffness by Agents Known to Affect Hearing
,” in
Diversity in Auditory Mechanics
,
E. R.
Lewis
,
G. R.
Long
,
R. F.
Lyon
,
P. M.
Narins
,
C. R.
Steele
, and
E.
Hecht-Poinar
, eds.,
World Scientific Press
, Singapore,
524
530
.
7.
Frank
,
G.
,
Hemmert
,
W.
, and
Gummer
,
A. W.
, 1999, “
Limiting Dynamics of High-Frequency Electromechanical Transduction of Outer Hair Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
,
4420
4425
.
8.
Tolomeo
,
J. A.
, and
Steele
,
R. C.
, 1998, “
A Dynamic Model of Outer Hair Cell Motility Including Intracellular and Extracellular Fluid Viscosity
,”
J. Acoust. Soc. Am.
0001-4966,
103
,
524
534
.
9.
Zwislocki
,
J. J.
, 2002,
Auditory Sound Transmission
,
Lawrence Erbaum Associates, Publ. Mahwan
, NJ.
10.
Ulfendahl
,
M.
, 1997, “
Mechanical Responses of the Mammalian Cochlea
,”
Prog. Neurobiol.
0301-0082,
55
,
331
380
.
11.
Scherer
,
M. M.
, and
Gummer
,
A. W.
, 2004, “
Impedance Analysis of the Organ of Corti with Magnetically Actuated Probes
,”
Biophys. J.
0006-3495,
87
,
1378
1391
.
12.
Holley
,
M. C.
,
Kalinec
,
F.
, and
Kachar
,
B.
, 1992, “
Structure of the Cortical Cytoskeleton in Mammalian Outer Hair Cells
,”
J. Cell. Sci.
0021-9533,
102
,
569
580
.
13.
Steele
,
C. R.
,
Baker
,
G.
,
Tolomeo
,
J. A.
, and
Zetes
,
D.
, 1993, “
Electromechanical Models of Outer Hair Cell
,” in
Biophysics of Hair Cell Sensory Systems
,
H.
Duifhuis
et al.
, eds.,
World Scientific Press
, Singapore,
207
214
.
14.
Tolomeo
,
J. A.
, and
Steele
,
C. R.
, 1995, “
Orthotropic Properties of the Composite Outer Hair Cell Wall
,”
J. Acoust. Soc. Am.
0001-4966,
97
,
3006
3011
.
15.
Spector
,
A. A.
,
Ameen
,
M.
,
Charalambides
,
P. G.
, and
Popel
,
A. S.
, 2002, “
Nanostructure, Effective, Properties, and Deformation Pattern of the Cochlear Outer Hair Cell Cytoskeleton
,”
ASME J. Biomech. Eng.
0148-0731,
124
,
180
187
.
16.
Kalinec
,
F.
,
Holley
,
M. C.
,
Iwasa
,
K. H.
,
Lim
,
D. J.
, and
Kachar
,
B.
, 1992, “
A Membrane-Based Force Generation Mechanism in Auditory Sensory Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
89
,
8671
8675
.
17.
Gale
,
J. E.
, and
Ashmore
,
J. F.
, 1997, “
The Outer Hair Cell Motor in Membrane Patches
,”
Pfluegers Arch.
0031-6768,
434
,
267
271
.
18.
Kakehata
,
S.
, and
Santos-Sacchi
,
J.
, 1996, “
Effects of Salycilate and Lanthanides on Outer Hair Cell Motility and Associated Gaiting Charge
,”
J. Neurosci.
0270-6474,
16
,
4881
4889
.
19.
Kakehata
,
S.
, and
Santos-Sacchi
,
J.
, 1995, “
Membrane Tension Directly Shifts Voltage Dependence of Outer Hair Cell Motility and Associated Gating Charge
,”
Biophys. J.
0006-3495,
68
,
2190
2197
.
20.
Housley
,
G. D.
, and
Ashmore
,
J. F.
, 1992, “
Ionic Currents of Outer Hair Cells Isolated from Guinea-Pig Cochlea
,”
J. Physiol. (London)
0022-3751,
448
,
73
98
.
21.
Zheng
,
J.
,
Shen
,
W.
,
He
,
D.
,
Long
,
K. B.
,
Madison
,
L. D.
, and
Dallos
,
P.
, 2000, “
Prestin is the Motor Protein of Cochlear Outer Hair Cells
,”
Nature (London)
0028-0836,
405
,
149
155
.
22.
Ludwig
,
J.
,
Oliver
,
D.
,
Frank
,
G.
,
Klöcker
,
N.
,
Gummer
,
A. W.
, and
Fakler
,
B.
2001, “
Reciprocal Electromechanical Properties of Rat Prestin: The Motor Molecule from Rat Outer Hair Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
98
,
4178
4183
.
23.
Oliver
,
D.
,
He
,
D. Z.-Z.
,
Klocker
,
N.
,
Ludwig
,
J.
,
Schulte
,
U.
,
Waldegger
,
S.
,
Ruppersberg
,
J. P.
,
Dallos
,
P.
, and
Fakler
,
B.
, 2001, “
Intracellular Anions as the Voltage-Sensor of Prestin, The Outer Hair Cell Motor Protein
,”
Science
0036-8075,
292
,
2340
2343
.
24.
Rybalchenko
,
V.
, and
Santos-Sacchi
,
J.
, 2003, “
Cl− Flux Through a Non-Selective, Stretch-Sensitive Conductance Influences the Outer Hair Cell Motor of the Guinea-Pig
,”
J. Physiol. (London)
0022-3751,
547
,
873
891
.
25.
Liberman
,
M. C.
,
Gao
,
J.
,
He
,
D. Z.-Z.
,
Wu
,
X.
,
Jia
,
S.
, and
Zuo
,
J.
, 2002, “
Prestin is Required for Electromotility of the Outer Hair Cell and for the Cochlear Amplifier
,”
Nature (London)
0028-0836,
419
,
300
304
.
26.
Forge
,
A.
, 1991, “
Structural Features of the Lateral Walls in Mammalian Cochlear Outer Hair Cells
,”
Cell Tissue Res.
0302-766X,
265
,
473
484
.
27.
Saito
,
K.
, 1983, “
Fine Structure of the Sensory Epithelium of Guinea Pig Organ of Corti: Subsurface Cistenal and Lamellar Body of the Outer Hair Cells
,”
Cell Tissue Res.
0302-766X,
229
,
467
481
.
28.
Santos-Sacchi
,
J.
,
Kakehata
,
S.
,
Kikuchi
,
T.
,
Katory
,
Y.
, and
Takasaka
,
T.
, 1998, “
Density of Motility-Related Charge in the Outer Hair Cell of the Guinea Pig is Inversely Related to Best Frequency
,”
Neurosci. Lett.
0304-3940,
256
,
155
158
.
29.
Dallos
,
P.
,
Hallworth
,
R.
, and
Evans
,
B. N.
, 1991, “
Nature of the Motor Element in Electrokinetic Shape Changes of Cochlear Outer Hair Cells
,”
Nature (London)
0028-0836,
350
,
1455
1457
.
30.
Dallos
,
P.
,
Hallworth
,
R.
, and
Evans
,
B. N.
, 1993, “
Theory of Electrically Driven Shape Changes of Cochlear Outer Hair Cells
,”
J. Neurophysiol.
0022-3077,
70
,
299
323
.
31.
Iwasa
,
K. H.
, 1993, “
Effect of Stress on the Membrane Capacitance of the Auditory Outer Hair Cell
,”
Biophys. J.
0006-3495,
65
,
492
498
.
32.
Iwasa
,
K. H.
, 2000, “
Effect of Membrane Motor on the Axial Stiffness of the Cochlear Outer Hair Cell
,”
J. Acoust. Soc. Am.
0001-4966,
107
,
2764
2766
.
33.
Iwasa
,
K. H.
, and
Adachi
,
M.
, 1997, “
Force Generation in the Outer Hair Cell of the Cochlea
,”
Biophys. J.
0006-3495,
73
,
546
555
.
34.
Dallos
,
P.
, and
He
,
D. Z.-Z.
, 2000, “
Models of Outer Hair Cell Stiffness and Motility
,”
J. Assoc. Res. Otolaryngol.
1525-3961,
1
,
283
291
.
35.
Deo
,
N.
, and
Grosh
,
K.
, 2004, “
Two State Model for Outer Hair Cell Stiffness and Motility
,”
Biophys. J.
0006-3495,
86
,
3519
3528
.
36.
Spector
,
A. A.
,
Ameen
,
M.
, and
Popel
,
A. S.
, 2001, “
Simulation of Motor-Driven Cochlear Outer Hair Cell Electromotility
,”
Biophys. J.
0006-3495,
81
,
11
24
.
37.
Gale
,
J. E.
, and
Ashmore
,
J. F.
, 1994, “
Charge Displacement Induced by Rapid Stretch in the Basolateral Membrane of the Guinea-Pig Outer Hair Cell
,”
Proc. R. Soc. London, Ser. B
0962-8452,
255
,
243
249
.
38.
Mountain
,
D. C.
, and
Hubbard
,
A. E.
, 1994, “
A Piezoelectric Model of Outer Hair Cell Function
,”
J. Acoust. Soc. Am.
0001-4966,
95
,
350
354
.
39.
Spector
,
A. A.
, 2001, “
A Nonlinear Electroelastic Model of the Auditory Outer Hair Cell
,”
Int. J. Solids Struct.
0020-7683,
38
,
2115
2129
.
40.
Spector
,
A. A.
, 2000, “
Thermodynamic Potentials and Constitutive Relations for Nonlinear Electroelastic Biological Membrane
,” in
Mechanics of Electromagnetic Materials and Structures
,
J.
Yang
and
G. A.
Maugin
, eds.,
IOS Press
, Amsterdam,
99
109
.
41.
Iwasa
,
K. H.
, 2001, “
A Two-State Piezoelectric Model for Outer Hair Cell Motility
,”
Biophys. J.
0006-3495,
81
,
2495
2506
.
42.
Spector
,
A. A.
, and
Jean
,
R. P.
, 2004, “
Modes and Balance of Energy in the Piezoelectric Cochlear Outer Hair Cell Wall
,”
ASME J. Biomech. Eng.
0148-0731,
126
,
17
25
.
43.
Spector
,
A. A.
, 2003, “
Estimation of the Effectiveness of the Molecular Motors in an Active Cell
,” in
Advances in Computational and Experimental Engineering and Sciences
,
S. N.
Atluri
,
D. E.
Beskos
, and
D.
Polyzos
, eds.,
Tech. Science Press
, Forsyth, Georgia (www.techscience.comwww.techscience.com).
44.
Spector
,
A. A.
,
Brownell
,
W. E.
, and
Popel
,
A. S.
, 1998, “
Elastic Properties of the Composite Outer Hair Cell Wall
,”
Ann. Biomed. Eng.
0090-6964,
26
,
157
165
.
45.
Spector
,
A. A.
, and
Jean
,
R. P.
, 2003, “
Elastic Moduli of the Piezoelectric Cochlear Outer Hair Cell Membrane
,”
Exp. Mech.
0014-4851,
43
,
355
360
.
46.
Dong
,
X.-x.
,
Ospeck
,
M.
, and
Iwasa
,
K. H.
, 2002, “
Piezolelectric Reciprocal Relationships of the Membrane Motor in the Cochlear Outer Hair Cell
,”
Biophys. J.
0006-3495,
82
,
1254
1259
.
47.
J. T.
Ratnanather
,
A. A.
Spector
,
A. S.
Popel
, and
W. E.
Brownell
, 1997, “
Is the Outer Hair Cell Wall Viscoelastic
?” in
Diversity in Auditory Mechanics
,
E. R.
Lewis
,
G. R.
Long
,
R. F.
Lyon
,
P. M.
Narins
,
C. R.
Steele
, and
E.
Hecht-Poinar
, eds.,
World Scientific
, Singapore,
601
607
.
48.
Spector
,
A. A.
,
Brownell
,
W. E.
, and
Popel
,
A. S.
, 1998, “
Estimation of Elastic Moduli and Bending Stiffness of Anisotropic Outer Hair Cell Wall
,”
J. Acoust. Soc. Am.
0001-4966,
103
,
1007
1011
.
49.
Vale
,
R. D.
, and
Fletterick
,
R. J.
, 1997, “
The Design Plan of Kinesin Motors
,”
Annu. Rev. Cell Dev. Biol.
1081-0706,
13
,
745
777
.
50.
Barclay
,
C. J.
, 1998, “
Estimation of Cross-Bridge Stiffness from Maximum Thermodynamic Efficiency
,”
J. Muscle Res. Cell Motil.
0142-4319,
19
,
855
864
.
51.
Ikeda
,
T.
, 1996,
Fundamentals of Piezoelectricity
,
Oxford University Press
, Oxford.
52.
Dallos
,
P.
, and
Fakler
,
B.
, 2002, “
Prestin, A New Type of Motor Protein
,”
Nature (London)
0028-0836,
3
,
104
111
.
53.
Iwasa
,
K. H.
, 1994, “
A Mmembrane Motor Model for the Fast Motility of the Outer Hair Cell
,”
J. Acoust. Soc. Am.
0001-4966,
96
,
2216
2224
.
54.
Adachi
,
M.
, and
Iwasa
,
K. H.
1999, “
Electrically Driven Motor in the Outer Hair Cell: Effect of a Mechanical Constraint
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
,
7244
7249
.
You do not currently have access to this content.