Endothelial cells in vivo are normally subjected to multiple mechanical stimuli such as stretch and fluid shear stress (FSS) but because each stimulus induces magnitude-dependent morphologic responses, the relative importance of each stimulus in producing the normal in vivo state is not clear. Using cultured human aortic endothelial cells, this study first determined equipotent levels of cyclic stretch, steady FSS, and oscillatory FSS with respect to the time course of cell orientation. We then tested whether these levels of stimuli were equipotent in combination with each other by imposing simultaneous cyclic stretch and steady FSS or cyclic stretch and oscillatory FSS so as to reinforce or counteract the cells’ orientation responses. Equipotent levels of the three stimuli were 2% cyclic stretch at 2%s, 80dynescm2 steady FSS and 20±10dynescm2 oscillatory FSS at 20dynecm2-s. When applied in reinforcing fashion, cyclic stretch and oscillatory, but not steady, FSS were additive. Both pairs of stimuli canceled when applied in counteracting fashion. These results indicate that this level of cyclic stretch and oscillatory FSS sum algebraically so that they are indeed equipotent. In addition, oscillatory FSS is a stronger stimulus than steady FSS for inducing cell orientation. Moreover, arterial endothelial cells in vivo are likely receiving a stronger stretch than FSS stimulus.

1.
Flaherty
,
J. T.
,
Pierce
,
J. E.
,
Ferrans
,
V. J.
,
Patel
,
D. J.
, and
Tucker
,
W. K.
, 1972, “
Endothelial Nuclear Patterns in the Canine Arterial Tree with Particular Reference to Hemodynamic Events
,”
Circ. Res.
0009-7330,
30
, pp.
23
33
.
2.
Langille
,
B. L.
, and
Adamson
,
S. L.
, 1981, “
Relationship Between Blood Flow Direction and Endothelial Cell Orientation at Arterial Branch Sites in Rabbits and Mice
,”
Circ. Res.
0009-7330,
48
, pp.
481
488
.
3.
Nerem
,
R. M.
,
Levesque
,
M. J.
, and
Cornhill
,
J. F.
, 1981, “
Vascular Endothelial Morphology as an Indicator of the Pattern of Blood Flow
.”
ASME J. Biomech. Eng.
0148-0731,
103
,
172
176
.
4.
Kim
,
D. W.
,
Langille
,
B. L.
,
Wong
,
M. K. K.
, and
Gotlieb
,
A. I.
, 1989, “
Patterns of Endothelial Microfilament Distribution in the Rabbit Aorta In Situ
.”
Circ. Res.
0009-7330,
64
,
21
31
.
5.
Franke
,
R. P.
,
Grafe
,
M.
,
Schnittler
,
H.
,
Seiffge
,
D.
, and
Mittermayer
,
C.
, 1984, “
Induction of Human Vascular Endothelial Stress Fibres by Fluid Shear Stress
.”
Nature (London)
0028-0836
307
,
648
649
.
6.
Levesque
,
M. J.
and
Nerem
,
R. M.
, 1985, “
The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear Stress
.”
ASME J. Biomech. Eng.
0148-0731,
107
,
341
347
.
7.
Dewey
,
C. F.
, Jr.
,
Bussolari
,
S. R.
,
Gimbrone
,
M. A.
, Jr.
, and
Davies
,
P. F.
, 1981, “
The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
.”
ASME J. Biomech. Eng.
0148-0731,
103
,
177
185
.
8.
Eskin
,
S. G.
,
Ives
,
C. L.
,
McIntire
,
L. V.
, and
Navarro
,
L. T.
, 1984, “
Response of Cultured Endothelial Cells to Steady Flow
.”
Microvasc. Res.
0026-2862,
28
,
87
94
.
9.
Remuzzi
,
A.
,
Dewey
,
C. F.
, Jr.
,
Davies
,
P. F.
, and
Gimbrone
,
M. A.
, Jr.
, 1984, “
Orientation of Endothelial Cells in Shear Fields In Vitro
.”
Biorheology
0006-355X,
21
,
617
630
.
10.
Ives
,
C. L.
,
Eskin
,
S. G.
,
McIntire
,
L. V.
, and
DeBakey
,
M. E.
, 1983, “
The Importance of Cell Origin and Substrate in the Kinetics of Endothelial Cell Alignment in Response to Steady Flow
.”
Trans. Am. Soc. Artif. Intern. Organs
0066-0078,
29
,
269
274
.
11.
Wechezak
,
A. R.
,
Viggers
,
R. F.
, and
Sauvage
,
L. R.
, 1995, “
Fibronectin and F-Actin Redistribution in Cultured Endothelial Cells Exposed to Shear Stress
.”
Lab. Invest.
0023-6837,
53
,
639
647
.
12.
Ookawa
,
K.
,
Sato
,
M.
, and
Ohshima
,
N.
, 1992, “
Changes in the Microstructure of Cultured Porcine Aortic Endothelial Cells in the Early Stage After Applying a Fluid-Imposed Shear Stress
.”
J. Biomech.
0021-9290,
25
,
1321
1328
.
13.
Galbraith
,
C. G.
,
Skalak
,
R.
, and
Chien
,
S.
, 1998, “
Shear Stress Induces Spatial Reorganization of the Endothelial Cell Cytoskeleton
.”
Cell Motil. Cytoskeleton
0886-1544,
40
,
314
330
.
14.
Dartsch
,
P. C.
and
Betz
,
E.
, 1989, “
Response of Cultured Endothelial Cells to Mechanical Stimulation
.”
Basic Res. Cardiol.
0300-8428,
84
,
268
281
.
15.
Iba
,
T.
and
Sumpio
,
B. E.
, 1991, “
Morphological Response of Human Endothelial Cells Subjected to Cyclic Strain In Vitro
.”
Microvasc. Res.
0026-2862,
42
,
245
254
.
16.
Shirinsky
,
V. P.
,
Antonov
,
A. S.
,
Birukov
,
K. G.
,
Sobolevsky
,
A. V.
,
Romanov
,
Y. A.
,
Kabaeva
,
N. V.
,
Antonova
,
G. N.
, and
Smirnov
,
V. N.
, 1989, “
Mechano-Chemical Control of Human Endothelium Orientation and Size
.”
J. Cell Biol.
0021-9525,
109
(
1
),
331
339
.
17.
Sumpio
,
B. E.
,
Banes
,
A. J.
,
Buckley
,
M.
, and
Johnson
,
G.
, 1988, “
Alterations in Aortic Endothelial Cell Morphology and Cytoskeletal Protein Synthesis During Cyclic Tensional Deformation
.”
J. Vasc. Surg.
0741-5214,
7
,
130
138
.
18.
Takemasa
,
T.
,
Yamaguchi
,
T.
,
Yamamoto
,
Y.
,
Sugimoto
,
K.
, and
Yamashita
,
K.
, 1998, “
Oblique Alignment of Stress Fibers in cells Reduces the Mechanical Stress in Cyclically Deforming Fields
.”
Eur. J. Cell Biol.
0171-9335,
77
(
2
),
91
99
.
19.
Wang
,
H. C.
,
Ip
,
W.
,
Boissy
,
R.
, and
Grood
,
E. S.
, 1995, “
Cell Orientation Response to Cyclically Deformed Substrates: Experimental Validation of a Cell Model
.”
J. Biomech.
0021-9290,
7
,
130
138
.
20.
Takemasa
,
T.
,
Sugimoto
,
K.
, and
Yamashita
,
K.
, 1997, “
Amplitude-Dependent Stress Fiber Reorientation in Early Response to Cyclic Strain
.”
Exp. Cell Res.
0014-4827,
230
,
407
410
.
21.
Wang
,
J. H.-C.
,
Goldschmidt-Clermont
,
P.
, and
Yin
,
F. C. P.
, 2000, “
Contractility Affects Stress Fiber Remodeling and Reorientation of Endothelial Cells Subjected to Cyclic Mechanical Stretching
.”
Ann. Biomed. Eng.
0090-6964,
28
,
1165
1171
.
22.
Wang
,
J. H.-C.
,
Goldschmidt-Clermont
,
P.
,
Moldovan
,
N. I.
, and
Yin
,
F. C. P.
, 2000, “
Leukotrienes and Tyrosine Phosphorylation Mediate Stretching-Induced Actin Cytoskeletal Remodeling in Endothelial Cells
.”
Cell Motil. Cytoskeleton
0886-1544,
46
,
137
145
.
23.
Kim
,
D. W.
,
Gotlieb
,
A. I.
, and
Langille
,
B. L.
, 1989, “
In Vivo Modulation of Endothelial Factin Microfilaments by Experimental Alterations in Shear Stress
.”
Arteriosclerosis (Dallas)
0276-5047,
9
,
439
445
.
24.
Davies
,
P. F.
, 1995, “
Flow-Mediated Endothelial Mechanotransduction
.”
Physiol. Rev.
0031-9333,
75
,
519
560
.
25.
Nerem
,
R. M.
,
Harrison
,
D. G.
,
Taylor
,
W. R.
, and
Alexander
,
R. W.
, 1993, “
Hemodyamics and Vascular Endothelial Biology
.”
J. Cardiovasc. Pharmacol.
0160-2446,
21
,
S6
S10
.
26.
Davies
,
P. F.
,
Remuzzi
,
A.
,
Gordon
,
E. J.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
,
M. A.
, 1986, “
Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover In Vitro
.”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
83
,
2114
2117
.
27.
DePaola
,
N.
,
Gimbrone
,
M. A.
, Jr.
,
Davies
,
P. F.
, and
Dewey
,
C. F.
, Jr.
, 1992, “
Vascular Endothelium Responds to Fluid Shear Stress Gradients
.”
Arterioscler. Thromb.
1049-8834,
12
,
1254
1257
.
28.
Helmlinger
,
G.
,
Geiger
,
R. V.
,
Schreck
,
S.
, and
Nerem
,
R. M.
, 1991, “
Effects of Pulsatile Flow on Cultured Vascular Endothelial Cell Morphology
.”
ASME J. Biomech. Eng.
0148-0731,
113
,
123
131
.
29.
Tardy
,
Y.
,
Resnick
,
N.
,
Gimbrone
,
M. A.
, and
Dewey
,
C. F.
, Jr.
, 1997, “
Shear Stress Gradients Remodel Endothelial Monolayers In Vitro Via a Cell Proliferation-Migration-Loss Cycle
.”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
17
,
3102
3106
.
30.
Peng
,
X.
,
Recchia
,
F. A.
,
Byrne
,
B. J.
,
Wittstein
,
I. S.
,
Ziegelstein
,
R. C.
, and
Kass
,
D.
, 2000, “
In Vitro System to Study Realistic Pulsatile Flow and Stretch Signaling in Cultured Vascular Cells
.”
Am. J. Physiol.
0002-9513,
279
,
C797
C805
.
31.
Zhao
,
S.
,
Suciu
,
A.
,
Ziegler
,
T.
,
Moore
,
J. E.
,
Burki
,
E.
,
Meister
,
J. J.
, and
Brunner
,
H. R.
, 1995, “
Synergistic Effects of Fluid Shear Stress and Cyclic Circumferential Stretch on Vascular Endothelial Cell Morphology and Cytoskeleton
.”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
15
,
1781
1786
.
32.
Ziegelstein
,
R. C.
,
Blank
,
P. S.
,
Cheng
,
L.
, and
Capogrossi
,
M. C.
, 1998, “
Cytosolic Alkalinization of Vascular Endothelial Cells Produced by an Abrupt Reduction in Fluid Shear Stress
.”
Circ. Res.
0009-7330,
82
,
803
809
.
33.
Ziegler
,
T.
,
Silacci
,
P.
,
Harrison
,
V. J.
, and
Hayoz
,
D.
, 1998, “
Nitric Oxide Synthase Expression in Endothelial Cells Exposed to Mechanical Forces
.”
Hypertension
0194-911X,
32
,
351
355
.
34.
Qui
,
Y.
and
Tarbell
,
J. M.
, 2000, “
Interaction Between Wall Shear Stress and Circumferential Strain Affects Endothelial Cell Biochemial Production
.”
J. Vasc. Res.
1018-1172,
37
,
147
157
.
35.
Tsukurov
,
O. I.
,
Kwolek
,
C. J.
,
Italien
,
G. J.
,
Benbrahin
,
A.
,
Milinazzo
,
B. B.
,
Conroy
,
N. E.
,
Gertler
,
J. P.
,
Orkin
,
R. W.
, and
Abbott
,
W. M.
, 2000, “
The Response of Adult Human Saphenous Vein Endothelial Cells to Combined Pressurized Pulsatile Flow and Cyclic Strain, In Vitro
.”
Ann. Vasc. Surg.
0890-5096,
14
,
260
267
.
36.
Wang
,
J. H.-C.
,
Goldschmidt-Clermont
,
P.
,
Wille
,
J.
, and
Yin
,
F. C. P.
, 2001, “
Specificity of Endothelial Cell Reorientation in Response to Cyclic Mechanical Stretching
.” ASME
0148-0731,
34
,
1563
1572
.
37.
Nerem
,
R. M.
, 1992, “
Vascular Fluid Mechanics, The Arterial Wall, and Atherosclerosis
.”
ASME J. Biomech. Eng.
0148-0731,
114
,
274
282
.
38.
De Keulenaer
,
G. W.
,
Chappell
,
D. C.
,
Ishizaka
,
N.
,
Nerem
,
R. M.
,
Alexander
,
R. W.
, and
Griendling
,
K. K.
, 1994, “
Oscillatory and Steady Laminar Shear Stress Differentially Affect Human Endothelial Redox State: Role of a Auperoxide-Producing NADH Oxidase
.”
Circ. Res.
0009-7330,
158
,
133
139
.
39.
Wittstein
,
I. S.
,
Qui
,
W.
,
Ziegelstein
,
R. C.
,
Hu
,
Q.
, and
Kass
,
D.
, 2000, “
Opposite Effects of Pressurized Steady Versus Pulsatile Perfusion on Vascular Endothelial Cell Cytosolic pH
.”
Circ. Res.
0009-7330,
86
,
1230
1236
.
40.
Yanagisawa
,
K.
,
Kurihara
,
H.
, and
Kimura
,
S.
, 1988, “
A Novel Potent Vasocontrictor Peptide Produced by Vascular Endothelial Cells
.”
Nature (London)
0028-0836
332
,
411
415
.
41.
Yoshizumi
,
M.
,
Kurihara
,
H.
, and
Sugiyama
,
T.
, 1989, “
Hemodynamic Shear Stress Stimulates Endothelin Production by Cultured Endothelial Cells
.”
Biochem. Biophys. Res. Commun.
0006-291X,
161
,
859
864
.
42.
Sharefkin
,
J. B.
,
Diamond
,
S. L.
,
Eskin
,
S. G.
, and
McIntire
,
L. V.
, 1991, “
Fluid Flow Decreases Preproendothelin mRNA Levels and Suppresses Endothelin-1 Peptide Release in Cultured Human Endothelial Cells
.”
J. Vasc. Surg.
0741-5214,
14
,
1
9
.
43.
Malek
,
A. M.
and
Izumo
,
S.
, 1996, “
Mechanism of Endothelial Cell Shape Change and Cytoskeletal Remodeling in Response to Fluid Shear Stress
.”
J. Cell. Sci.
0021-9533,
109
,
713
726
.
44.
Long
,
Q.
,
Xu
,
X. Y.
,
Ariff
,
B.
,
Thom
,
S. A.
,
Hughes
,
A. D.
, and
Stanton
,
A. D.
, 2000,
1Reconstruction of Blood Flow Patterns in a Human Carotid Bifurcation: A Combined CFD and MRI Study
,
J. Magn. Reson Imaging
1053-1807
11
,
299
311
.
45.
Dewey
,
C. F.
, Jr.
, 1979, “
Dynamics of Arterial Flow
,”
Adv. Exp. Med. Biol.
0065-2598
115
,
55
102
.
46.
Dobrin
,
P. B.
, 1978, “
Mechanical Properties of Arteries
,”
Physiol. Rev.
0031-9333
58
,
397
460
.
47.
Wedding
,
K. L.
,
Draney
,
M. T.
,
Herfkens
,
R. J.
,
Zarins
,
C. K.
,
Taylor
,
C. A.
, and
Pele
,
N. J.
, 2002
Measurement of Vessel Wall Strain Using Cine Phase Contrast MRI
,
J. Magn. Reson Imaging
1053-1807
15
,
418
428
.
48.
Eskin
,
S. G.
, and
McIntire
,
L. V.
, 1988, “
Hemodynamic Effects on Atherosclerosis and Thrombosis
.”
Semin Thromb Hemost
0094-6176,
14
(
2
),
170
174
.
49.
Levesque
,
M. J.
,
Sprague
,
E. A.
, and
Nerem
,
R. M.
, 1990, “
Vascular Endothelial Cell Proliferation in Culture and the Influence of Flow
.”
Biomaterials
0142-9612,
11
,
702
707
.
50.
Thubrikar
,
M. J.
,
Roskelley
,
S. K.
, and
Eppink
,
R. T.
, 1990, “
Study of Stress Concentration in the Walls of the Bovine Coronary Arterial Branch
.”
J. Biomech.
0021-9290,
23
,
15
26
.
51.
Sipkema
,
P.
,
van der Linden
,
P. J. W.
,
Westerhof
,
N.
, and
Yin
,
F.
, 2003, “
Effect of Cyclic Axial Stretch of Rat Arteries on Endothelial Cytoskeletal Morphology and Vascular reactivity
.”
J. Biomech.
0021-9290,
36
,
653
659
.
You do not currently have access to this content.