A better understanding of the three-dimensional mechanics of the pelvis, at the patient-specific level, may lead to improved treatment modalities. Although finite element (FE) models of the pelvis have been developed, validation by direct comparison with subject-specific strains has not been performed, and previous models used simplifying assumptions regarding geometry and material properties. The objectives of this study were to develop and validate a realistic FE model of the pelvis using subject-specific estimates of bone geometry, location-dependent cortical thickness and trabecular bone elastic modulus, and to assess the sensitivity of FE strain predictions to assumptions regarding cortical bone thickness as well as bone and cartilage material properties. A FE model of a cadaveric pelvis was created using subject-specific computed tomography image data. Acetabular loading was applied to the same pelvis using a prosthetic femoral stem in a fashion that could be easily duplicated in the computational model. Cortical bone strains were monitored with rosette strain gauges in ten locations on the left hemipelvis. FE strain predictions were compared directly with experimental results for validation. Overall, baseline FE predictions were strongly correlated with experimental results (r2=0.824), with a best-fit line that was not statistically different than the line y=x(experimental strains=FEpredicted strains). Changes to cortical bone thickness and elastic modulus had the largest effect on cortical bone strains. The FE model was less sensitive to changes in all other parameters. The methods developed and validated in this study will be useful for creating and analyzing patient-specific FE models to better understand the biomechanics of the pelvis.

1.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
, 1993, “
Hip Joint Loading During Walking and Running, Measured in Two Patients
,”
J. Biomech.
0021-9290,
26
, pp.
969
990
.
2.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
, 2001, “
Hip Contact Forces and Gait Patterns from Routine Activities
,”
J. Biomech.
0021-9290,
34
, pp.
859
871
.
3.
Michaeli
,
D. A.
,
Murphy
,
S. B.
, and
Hipp
,
J. A.
, 1997, “
Comparison of Predicted and Measured Contact Pressures in Normal and Dysplastic Hips
,”
Med. Eng. Phys.
1350-4533,
19
, pp.
180
186
.
4.
Ochsner
,
M. G.
, Jr.
,
Hoffman
,
A. P.
,
DiPasquale
,
D.
,
Cole
,
F. J.
, Jr.
,
Rozycki
,
G. S.
,
Webster
,
D. W.
, and
Champion
,
H. R.
, 1992, “
Associated Aortic Rupture-Pelvic Fracture: An Alert for Orthopedic and General Surgeons
,”
J. Trauma
0022-5282,
33
, pp.
429
434
.
5.
Rothenberger
,
D. A.
,
Fischer
,
R. P.
,
Strate
,
R. G.
,
Velasco
,
R.
, and
Perry
,
J. F.
, Jr.
, 1978, “
The Mortality Associated with Pelvic Fractures
,”
Surgery
,
84
, pp.
356
361
.
6.
Adams
,
P.
,
Davies
,
G. T.
, and
Sweetnam
,
P.
, 1971, “
Cortical Bone-Loss with Age
,”
Lancet
0140-6736,
2
, pp.
1201
1202
.
7.
Bombelli
,
R.
, 1983,
Osteoarthritis of the Hip
,
Springer-Verlag
, Berlin, Germany.
8.
Croft
,
P.
,
Cooper
,
C.
,
Wickham
,
C.
, and
Coggon
,
D.
, 1991, “
Osteoarthritis of the Hip and Acetabular Dysplasia
,”
Ann. Rheum. Dis.
0003-4967,
50
, pp.
308
310
.
9.
Parfitt
,
A. M.
, 1984, “
Age-Related Structural Changes in Trabecular and Cortical Bone: Cellular Mechanisms and Biomechanical Consequences
,”
Calcif. Tissue Int.
0171-967X,
36
, pp.
S123
S128
.
10.
Solomon
,
L.
, 1976, “
Patterns of Osteoarthritis of the Hip
,”
J. Bone Joint Surg. Br.
0301-620X,
58
, pp.
176
183
.
11.
Stulberg
,
S. D.
, and
Harris
,
W. H.
, 1974, “
Acetabular Dysplasia and Development of Osteoarthritis of the Hip
,”
Proceedings of the Second Open Scientific Meeting of the Hip Society
,
82
93
.
12.
Harris
,
W. H.
, 1986, “
Etiology of Osteoarthritis of the Hip
,”
Clin. Orthop.
0009-921X, pp.
20
33
.
13.
Murray
,
R. O.
, 1965, “
The Aetiology of Primary Osteoarthritis of the Hip
,”
Br. J. Radiol.
0007-1285,
38
, pp.
810
824
.
14.
Afoke
,
N. Y.
,
Byers
,
P. D.
, and
Hutton
,
W. C.
, 1987, “
Contact Pressures in the Human Hip Joint
,”
J. Bone Joint Surg. Br.
0301-620X,
69
, pp.
536
541
.
15.
Brown
,
T. D.
and
Shaw
,
D. T.
, 1983, “
In Vitro Contact Stress Distributions in the Natural Human Hip
,”
J. Biomech.
0021-9290,
16
, pp.
373
384
.
16.
Day
,
W. H.
,
Swanson
,
S. A.
, and
Freeman
,
M. A.
, 1975, “
Contact Pressures in the Loaded Human Cadaver Hip
,”
J. Bone Joint Surg. Br.
0301-620X,
57
, pp.
302
313
.
17.
Hodge
,
W. A.
,
Fijan
,
R. S.
,
Carlson
,
K. L.
,
Burgess
,
R. G.
,
Harris
,
W. H.
, and
Mann
,
R. W.
, 1986, “
Contact Pressures in the Human Hip Joint Measured in Vivo
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
83
, pp.
2879
2883
.
18.
Ipavec
,
M.
,
Brand
,
R. A.
,
Pedersen
,
D. R.
,
Mavcic
,
B.
,
Kralj-Iglic
,
V.
, and
Iglic
,
A.
, 1999, “
Mathematical Modeling of Stress in the Hip During Gait
,”
J. Biomech.
0021-9290,
32
, pp.
1229
1235
.
19.
Ipavec
,
M.
,
Iglic
,
A.
,
Iglic
,
V. K.
, and
Srakar
,
F.
, 1996, “
Stress Distribution on the Hip Joint Articular Surface During Gait
,”
Pfluegers Arch.
0031-6768,
431
, pp.
R275
R276
.
20.
Mavcic
,
B.
,
Antolic
,
V.
,
Brand
,
R.
,
Iglic
,
A.
,
Kralj-Iglic
,
V.
, and
Pedersen
,
D. R.
, 2000, “
Peak Contact Stress in Human Hip During Gait
,”
Pfluegers Arch.
0031-6768,
440
, pp.
R177
R178
.
21.
Mavcic
,
B.
,
Pompe
,
B.
,
Antolic
,
V.
,
Daniel
,
M.
,
Iglic
,
A.
, and
Kralj-Iglic
,
V.
, 2002, “
Mathematical Estimation of Stress Distribution in Normal and Dysplastic Hips
,”
J. Orthop. Res.
0736-0266,
20
,
1025
1030
.
22.
Calvo
,
E.
,
Palacios
,
I.
,
Delgado
,
E.
,
Ruiz-Cabello
,
J.
,
Hernandez
,
P.
,
Sanchez-Pernaute
,
O.
,
Egido
,
J.
, and
Herrero-Beaumont
,
G.
, 2001, “
High-Resolution MRI Detects Cartilage Swelling at the Early Stages of Experimental Osteoarthritis
,”
Osteoarthritis Cartilage
1063-4584,
9
, pp.
463
472
.
23.
Gupta
,
K. B.
,
Duryea
,
J.
, and
Weissman
,
B. N.
, 2004, “
Radiographic Evaluation of Osteoarthritis
,”
Radiol. Clin. North Am.
0033-8389,
42
, pp.
11
41
, v.
24.
Fazzalari
,
N. L.
,
Moore
,
R. J.
,
Manthey
,
B. A.
, and
Vernon-Roberts
,
B.
, 1992, “
Comparative Study of Iliac Crest and Subchondral Femoral Bone in Osteoarthritic Patients
,”
Bone (N.Y.)
8756-3282
13
, pp.
331
335
.
25.
Fischer
,
K. J.
,
Manson
,
T. T.
,
Pfaeffle
,
H. J.
,
Tomaino
,
M. M.
, and
Woo
,
S. L.
, 2001, “
A Method for Measuring Joint Kinematics Designed for Accurate Registration of Kinematic Data to Models Constructed from CT Data
,”
J. Biomech.
0021-9290,
34
, pp.
377
383
.
26.
Dalstra
,
M.
,
Huiskes
,
R.
, and
van Erning
,
L.
, 1995, “
Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
272
278
.
27.
Pytel
,
A.
and
Kiusalaas
,
J.
, 2003,
Mechanics of Materials
, vol.
14
.
Thomson
, Pacific Grove, CA.
28.
Boissonnat
,
J.-D.
, 1988, “
Shape Reconstruction from Planar Cross-Sections
,”
Comput. Vis. Graph. Image Process.
0734-189X,
44
, pp.
1
29
.
29.
Schroeder
,
W. J.
,
Zarge
,
J.
, and
Lorenson
,
W. E.
, 1992, “
Decimation of Triangle Meshes
,”
ACM SIGGRAPH Computer Graphics
,
26
, pp.
65
70
.
30.
Taubin
,
G.
,
Zhang
,
T.
, and
Golub
,
G.
, 1996. “
Optimal Surface Smoothing as Filter Design
,”
Stanford University
IBM RC-20404.
31.
Schroeder
,
W. J.
,
Avila
,
L. S.
, and
Hoffman
,
W.
, 2002,
The Visualization Toolkit: An Object Oriented Approach to Computer Graphics
,
3rd ed.
Kitware Inc.
, Clifton Park, NY.
32.
Pawlak
,
T. P.
, and
Yunus
,
S. M.
, 1991, “
Solid Elements with Rotational Degrees of Freedom: Part II. Tetrahedron Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
31
, pp.
593
610
.
33.
Ahmad
,
S.
, 1970, “
Analysis of Thick and Thin Shell Structures
,”
Int. J. Numer. Methods Eng.
0029-5981,
2
, pp.
419
451
.
34.
Hughes
,
T. J. R.
, and
Liu
,
W. K.
, 1981, “
Nonlinear Finite Element Analysis of Shells: Part I. Two Dimensional Shells
.,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
27
, pp.
167
181
.
35.
Hughes
,
T. J. R.
and
Liu
,
W. K.
, 1981, “
Nonlinear Finite Element Analysis of Shells: Part II. Three Dimensional Shells
.,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
27
, pp.
331
362
.
36.
Hughes
,
T. J.
, 1980, “
Generalization of Selective Integration Procedures to Anisotropic and Nonlinear Media
,”
Int. J. Numer. Methods Eng.
0029-5981,
15
, pp.
1413
1418
.
37.
Prevrhal
,
S.
,
Engelke
,
K.
, and
Kalender
,
W. A.
, 1999, “
Accuracy Limits for the Determination of Cortical Width and Density: The Influence of Object Size and CT Imaging Parameters
,”
Phys. Med. Biol.
0031-9155,
44
, pp.
751
764
.
38.
Nickoloff
,
E. L.
,
Dutta
,
A. K.
, and
Lu
,
Z. F.
, 2003, “
Influence of Phantom Diameter, Kvp and Scan Mode Upon Computed Tomography Dose Index
,”
Med. Phys.
0094-2405,
30
, pp.
395
402
.
39.
Suzuki
,
S.
,
Yamamuro
,
T.
,
Okumura
,
H.
, and
Yamamoto
,
I.
, 1991, “
Quantitative Computed Tomography: Comparative Study Using Different Scanners with Two Calibration Phantoms
,”
Br. J. Radiol.
0007-1285,
64
, pp.
1001
1006
.
40.
Dalstra
,
M.
,
Huiskes
,
R.
,
Odgaard
,
A.
, and
van Erning
,
L.
, 1993, “
Mechanical and Textural Properties of Pelvic Trabecular Bone
,”
J. Biomech.
0021-9290,
26
, pp.
523
535
.
41.
Mooney
,
M.
, 1940, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
0021-8979,
11
, pp.
582
592
.
42.
Little
,
R. B.
,
Wevers
,
H. W.
,
Siu
,
D.
, and
Cooke
,
T. D.
, 1986, “
A Three-Dimensional Finite Element Analysis of the Upper Tibia
,”
ASME J. Biomech. Eng.
0148-0731,
108
, pp.
111
119
.
43.
Cohen
,
J.
,
Cohen
,
P.
,
West
,
S. G.
, and
Aiken
,
L. S.
, 2003,
Applied Multiple Regression Analysis for the Behavioral Sciences
,
3rd ed.
Lawrence Erlhaum Associates
, Mahwah, NJ.
44.
Evans
,
F. G.
, 1973,
Mechanical Properties of Bone
.
Thomas
, Springfield, IL.
45.
Schuller
,
H. M.
,
Dalstra
,
M.
,
Huiskes
,
R.
, and
Marti
,
R. K.
, 1993, “
Total Hip Reconstruction in Acetabular Dysplasia. A Finite Element Study
,”
J. Bone Joint Surg. Br.
0301-620X,
75
, pp.
468
474
.
46.
Vasu
,
R.
,
Carter
,
D. R.
, and
Harris
,
W. H.
, 1982, “
Stress Distributions in the Acetabular Region--I. Before and after Total Joint Replacement
,”
J. Biomech.
0021-9290,
15
, pp.
155
164
.
47.
Carter
,
D. R.
,
Vasu
,
R.
, and
Harris
,
W. H.
, 1982, “
Stress Distributions in the Acetabular Region--II. Effects of Cement Thickness and Metal Backing of the Total Hip Acetabular Component
,”
J. Biomech.
0021-9290,
15
, pp.
165
170
.
48.
Rapperport
,
D. J.
,
Carter
,
D. R.
, and
Schurman
,
D. J.
, 1985, “
Contact Finite Element Stress Analysis of the Hip Joint
,”
J. Orthop. Res.
0736-0266,
3
, pp.
435
446
.
49.
Pedersen
,
D. R.
,
Crowninshield
,
R. D.
,
Brand
,
R. A.
, and
Johnston
,
R. C.
, 1982, “
An Axisymmetric Model of Acetabular Components in Total Hip Arthroplasty
,”
J. Biomech.
0021-9290,
15
, pp.
305
315
.
50.
Huiskes
,
R.
, 1987, “
Finite Element Analysis of Acetabular Reconstruction. Noncemented Threaded Cups
,”
Acta Orthop. Scand.
0001-6470,
58
, pp.
620
625
.
51.
Dalstra
,
M.
and
Huiskes
,
R.
, 1995, “
Load Transfer across the Pelvic Bone
,”
J. Biomech.
0021-9290,
28
, pp.
715
724
.
52.
Spears
,
I. R.
,
Pfleiderer
,
M.
,
Schneider
,
E.
,
Hille
,
E.
, and
Morlock
,
M. M.
, 2001, “
The Effect of Interfacial Parameters on Cup-Bone Relative Micromotions. A Finite Element Investigation
,”
J. Biomech.
0021-9290,
34
, pp.
113
120
.
53.
Garcia
,
J. M.
,
Doblare
,
M.
,
Seral
,
B.
,
Seral
,
F.
,
Palanca
,
D.
, and
Gracia
,
L.
, 2000, “
Three-Dimensional Finite Element Analysis of Several Internal and External Pelvis Fixations
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
516
522
.
54.
Konosu
,
A.
, 2003, “
Development of a Biofidelic Human Pelvic Fe-Model with Several Modifications onto a Commercial Use Model for Lateral Loading Conditions
,” proceedings of the
SAE International
,
85
100
.
55.
Oonishi
,
H.
,
Isha
,
H.
, and
Hasegawa
,
T.
, 1983, “
Mechanical Analysis of the Human Pelvis and Its Application to the Artificial Hip Joint--by Means of the Three Dimensional Finite Element Method
,”
J. Biomech.
0021-9290,
16
, pp.
427
444
.
56.
Dawson
,
J. M.
,
Khmelniker
,
B. V.
, and
McAndrew
,
M. P.
, 1999, “
Analysis of the Structural Behavior of the Pelvis During Lateral Impact Using the Finite Element Method
,”
Accid. Anal Prev.
0001-4575,
31
, pp.
109
119
.
57.
Lappi
,
V. G.
,
King
,
M. S.
, and
Lemay
,
I.
, 1979, “
Determination of Elastic Constants for Human Femurs
,”
ASME J. Biomech. Eng.
0148-0731,
101
, pp.
193
197
.
58.
Snyder
,
S. M.
and
Schneider
,
E.
, 1991, “
Estimation of Mechanical Properties of Cortical Bone by Computed Tomography
,”
J. Orthop. Res.
0736-0266,
9
, pp.
422
431
.
59.
Armstrong
,
C. G.
,
Bahrani
,
A. S.
, and
Gardner
,
D. L.
, 1979, “
In Vitro Measurement of Articular Cartilage Deformations in the Intact Human Hip Joint under Load
,”
J. Bone Joint Surg. Br.
0301-620X,
61
, pp.
744
755
.
You do not currently have access to this content.