An analytical approach for the mechanical interaction of the self-expanding Cardiocoil stent with the stenosed artery is presented. The damage factor as the contact stress at the stent-artery interface is determined. The stent is considered as an elastic helical rod having a nonlinear pressure-displacement dependence, while the artery is modeled by an elastic cylindrical shell. An influence of a moderate relative thickness of the shell is estimated. The equations for both the stent and the artery are presented in the stent-associated helical coordinates. The computational efficiency of the model enabled to carry out a parametric study of the damage factor. Comparative examinations are conducted for the stents made of the helical rods with circular and rectangular cross sections. It was found, in particular, that, under same other conditions, the damage factor for the stent with a circular cross section may be two times larger than that for a rectangular one.

1.
Werner
,
G. S.
,
Bahrmann
,
P.
,
Mutschke
,
O.
,
Emig
,
U.
,
Betge
,
S.
,
Ferrari
,
M.
, and
Figulla
,
H. R.
, 2003, “
Determinants of Target Vessel Failure in Chronic Total Coronary Occlusions after Stent Implantation—The Influence of Collateral Function and Coronary Hemodynamics
,”
J. Am. Coll. Cardiol.
0735-1097,
42
(
2
), pp.
219
225
.
2.
De Belder
,
A.
, and
Thomas
,
M. R.
, 1998, “
The Pathophysiology and Treatment of In-stent Restenosis
,”
Stent
,
1
(
3
), pp.
74
82
.
3.
Akiyama
,
T.
,
Di Mario
,
C.
,
Reimers
,
B.
,
Ferraro
,
M.
,
Moussa
,
I.
,
Blengino
,
S.
, and
Colombo
,
A.
, 1997, “
Does the High-Pressure Stent Expansion Induce More Restenosis?
,”
J. Am. Coll. Cardiol.
0735-1097,
29
, p.
368A
.
4.
Oesterle
,
S. N.
,
Whitbourn
,
R.
,
Fitzgerald
,
P. J.
,
Yeung
,
A. C.
,
Stertzer
,
S. H.
,
Dake
,
M. D.
,
Yock
,
P. G.
, and
Virmani
,
R.
, 1997, “
The Stent Decade: 1987 to 1997
,”
Am. Heart J.
0002-8703,
136
, pp.
578
599
.
5.
Rachev
,
A.
, 1997, “
Theoretical Study of the Effect of Stress-Dependent Remodeling on Arterial Geometry under Hypertensive Conditions
,”
J. Biomech.
0021-9290,
30
, pp.
819
827
.
6.
Rachev
,
A.
,
Manoach
,
E.
,
Berry
,
J.
, and
Moore
,
J. E.
, Jr.
, 2000, “
A Model of Stress-Induced Geometrical Remodeling of Vessel Segments Adjacent to Stents and Artery∕Graft Anastomoses
,”
J. Theor. Biol.
0022-5193,
206
, pp.
429
443
.
7.
Fluecker
,
F.
,
Sternthal
,
H.
, and
Klein
,
G. E.
, 1994, “
Strength, Elasticity, and Plasticity of Expandable Metal Stents: In Vitro Studies with Three Types of Stress
,”
J. Vasc. Interv Radiol.
1051-0443,
5
, pp.
745
750
.
8.
Lossef
,
S. V.
,
Luts
,
R. J.
, and
Mandorf
,
J.
, 1994, “
Comparison of Mechanical Deformation Properties of Metallic Stents with Use of Stress-Strain Analysis
,”
J. Vasc. Interv Radiol.
1051-0443,
5
, pp.
341
349
.
9.
Schrader
,
C. S.
, and
Beyar
,
R.
, 1998, “
Evaluation of the Compressive Mechanical Properties of Endoluminal Metal Stents
,”
Cathet Cardiovasc. Diagn.
0098-6569,
44
, pp.
179
187
.
10.
Dyet
,
J. F.
,
Watts
,
G.
,
Ettles
,
D. F.
, and
Nicholson
,
A. A.
, 2000, “
Mechanical Properties of Metallic Stents: How Do These Properties Influence the Choice of Stent for Specific Lesions?
,”
Cardiovasc. Intervent Radiol.
0174-1551,
23
, pp.
47
54
.
11.
Etave
,
F.
,
Finet
,
G.
,
Boivin
,
M.
,
Boyer
,
J.
,
Rioufol
,
G.
, and
Thollet
,
G.
, 2001, “
Mechanical Properties of Coronary Stents Determined by Using Finite Element Analysis
,”
J. Biomech.
0021-9290,
34
, pp.
1065
1075
.
12.
Dumoulin
,
C.
, and
Cochelin
B.
, 2000, “
Mechanical Behavior Modeling of Balloon-Expandable Stents
,”
J. Biomech.
0021-9290,
33
, pp.
1461
1470
.
13.
Loshakove
,
A.
, and
Azhari
,
H.
, 1997, “
Mathematical Formulation for Computing the Performance of Self Expanding Helical Stents
,”
Int. J. Med. Inf.
1386-5056,
44
, pp.
127
133
.
14.
Jedwab
,
M. R.
, and
Clerc
,
C. O.
, 1993, “
A Study of the Geometrical and Mechanical Properties of a Self-Expanding Metallic Stent—Theory and Experiment
,”
J. Appl. Biomater
1045-4861,
4
, pp.
77
85
.
15.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Schulze-Bauer
,
C. A.J.
, 2002, “
A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty using Magnetic Resonance Imaging and Mechanical Testing
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
753
767
.
16.
Auriccio
,
F.
,
Di Loreto
,
M.
, and
Sacco
,
E.
, 2001, “
Finite Element Analysis of a Stenotic Artery Revascularization through a Stent Insertion
,”
Comput. Methods Biomechanics and Biomechanical Engineering
,
4
, pp.
249
264
.
17.
Handbook of Coronary Stents
,
P.
Serruys
, ed.,
Martin Dunitz
, London, 1996, Chap. 10.1.
18.
Beyar
,
R.
,
Henry
,
M.
,
Shofti
,
R.
,
Grenadier
,
E.
,
Globerman
,
E.
, and
Beyar
,
M.
, 1994, “
Self Expandable Nitinol Stent for Cardiovascular Applications: Canine and Human Experience
,”
Cathet Cardiovasc. Diagn.
0098-6569,
32
, pp.
162
170
.
19.
Grenadier
,
E.
,
Shofti
,
S.
,
Beyar
,
M.
,
Lichtig
,
H.
,
Mordechovitz
,
D.
,
Globerman
,
O.
,
Markiewics
,
W.
, and
Beyar
,
R.
, 1994, “
Self Expandable and Highly Flexible Nitinol Stent: Immediate and Long Term Results in Dogs
,
Am. Heart J.
0002-8703,
128
, pp.
870
878
.
20.
Hong
,
M. K.
,
Beyar
,
R.
,
Kornowski
,
R.
,
Tio
,
F. O.
,
Bramwell
,
O.
, and
Leon
,
M. B.
, 1997, “
Acute and Chronic Effects of Self-Expanding Nitinol Stents in Porcine Coronary Arteries
,”
Coron. Artery Dis.
0954-6928,
8
(
1
), pp.
45
48
.
21.
Roguin
,
A.
,
Grenadier
,
E.
,
Linn
,
S.
,
Markiewicz
,
W.
, and
Beyar
,
R.
, 1999, “
Continued Expansion of the Nitinol Self-Expanding Coronary Stent: Angiographic Analysis and One-Year Clinical Follow-Up
,”
Am. Heart J.
0002-8703,
138
(
2
), pp.
326
333
.
22.
Holzapfel
,
G. A.
,
Eberlein
,
R.
,
Wriggers
,
P.
, and
Wezsäcker
,
H. W.
, 1996, “
Large Strain Analysis of Soft Biological Membranes: Formulation and Finite-Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
132
, pp.
45
61
.
23.
Vinson
,
J. R.
, 1993,
The Behavior of Shells Composed of Isotropic and Composite Materials
,
Kluwer Academic
, the Netherlands.
24.
Slepyan
,
L. I.
,
Krylov
,
V. I.
, and
Parnes
,
R.
, 2000, “
Helical Inclusion in an Elastic Matrix
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
827
865
.
You do not currently have access to this content.