Living tissues show an adaptive response to mechanical loading by changing their internal structure and morphology. Understanding this response is essential for successful tissue engineering of load-bearing structures, such as the aortic valve. In this study, mechanically induced remodeling of the collagen architecture in the aortic valve was investigated. It was hypothesized that, in uniaxially loaded regions, the fibers aligned with the tensile principal stretch direction. For biaxial loading conditions, on the other hand, it was assumed that the collagen fibers aligned with directions situated between the principal stretch directions. This hypothesis has already been applied successfully to study collagen remodeling in arteries. The predicted fiber architecture represented a branching network and resembled the macroscopically visible collagen bundles in the native leaflet. In addition, the complex biaxial mechanical behavior of the native valve could be simulated qualitatively with the predicted fiber directions. The results of the present model might be used to gain further insight into the response of tissue engineered constructs during mechanical conditioning.

1.
Sodian
,
R.
,
Hoerstrup
,
S. P.
,
Sperling
,
J. S.
,
Daebritz
,
S.
,
Martin
,
D. P.
,
Moran
,
A. M.
,
Kim
,
B. S.
,
Schoen
,
F. J.
,
Vacanti
,
J. P.
, and
Mayer
,
J. E.
, Jr
, 2000, “
Early in vivo experience with tissue engineered trileaflet heart valves
,”
Circulation
0009-7322,
102
(
19
), pp.
III22
III29
.
2.
Hoerstrup
,
S. P.
,
Sodian
,
R.
,
Daebritz
,
S.
,
Wang
,
J.
,
Bacha
,
E. A.
,
Martin
,
D. P.
,
Moran
,
A. M.
,
Guleserian
,
K. J.
,
Sperling
,
J. S.
,
Kaushal
,
S.
,
Vacanti
,
J. P.
,
Schoen
,
F. J.
, and
Mayer
,
J. E.
, Jr
, 2000, “
Functional living trileaflet heart valves grown in vitro
,”
Circulation
0009-7322,
102
(
19
), pp.
III44
III49
.
3.
Sodian
,
R.
,
Hoerstrup
,
S. P.
,
Sperling
,
J. S.
,
Daebritz
,
S.
,
Martin
,
D. P.
,
Schoen
,
F. J.
,
Vacanti
,
J. P.
, and
Mayer
,
J. E.
, Jr
, 2000, “
Tissue engineering of heart valves: in vitro experiences
,”
Ann. Thorac. Surg.
0003-4975,
70
(
1
), pp.
140
144
.
4.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—Part I: Experimental results
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
1
), pp.
23
30
.
5.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—Part II: A structural constitutive model
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
4
), pp.
327
335
.
6.
Guidry
,
C.
, and
Grinnell
,
F.
, 1985, “
Studies on the mechanism of hydrated collagen gel reorganization by human skin fibroblasts
,”
J. Cell. Sci.
0021-9533,
79
, pp.
67
81
.
7.
Birk
,
D. E.
, and
Trelstad
,
R. L.
, 1984, “
Extracellular compartments in matrix morphogenesis: Collagen fibril, bundle, and lamellar formation by corneal fibroblasts
,”
J. Cell Biol.
0021-9525,
99
(
6
), pp.
2024
2033
.
8.
Sawhney
,
R. K.
, and
Howard
,
J.
, 2002, “
Slow local movements of collagen fibers by fibroblasts drive the rapid global self-organization of collagen gels
,”
J. Cell Biol.
0021-9525,
157
(
6
), pp.
1083
1091
.
9.
Bishop
,
J. E.
, and
Lindahl
,
G.
, 1999, “
Regulation of cardiovascular collagen synthesis by mechanical load
,”
Cardiovasc. Res.
0008-6363,
42
(
1
), pp.
27
44
.
10.
MacKenna
,
D.
,
Summerour
,
S. R.
, and
Villarreal
,
F. J.
, 2000, “
Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis
,”
Cardiovasc. Res.
0008-6363,
46
(
2
), pp.
257
263
.
11.
Prajapati
,
R. T.
,
Chavally-Mis
,
B.
,
Herbage
,
D.
,
Eastwood
,
M.
, and
Brown
,
R. A.
, 2000, “
Mechanical loading regulates protease production by fibroblasts in three-dimensional collagen substrates
,”
Wound Repair Regen
1067-1927,
8
(
3
), pp.
226
237
.
12.
Rubin
E.
, and
Farber
,
J. L.
, 1998,
Pathology
,
Lippincott-Raven
, Philadelphia.
13.
Boerboom
,
R. A.
,
Driessen
,
N. J. B.
,
Bouten
,
C. V. C.
,
Huyghe
,
J. M.
, and
Baaijens
,
F. P. T.
, 2003, “
A finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valve
,”
Ann. Biomed. Eng.
0090-6964,
31
(
9
), pp.
1040
1053
.
14.
Driessen
,
N. J. B.
,
Boerboom
,
R. A.
,
Huyghe
,
J. M.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2003, “
Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
4
), pp.
549
557
.
15.
Driessen
,
N. J. B.
,
Peters
,
G. W. M.
,
Huyghe
,
J. M.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2003, “
Remodelling of continuously distributed collagen fibres in soft connective tissues
,”
J. Biomech.
0021-9290,
36
(
8
), pp.
1151
1158
.
16.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
, 1997, “
A small angle light scattering device for planar connective tissue microstructural analysis
,”
Ann. Biomed. Eng.
0090-6964,
25
(
4
), pp.
678
689
.
17.
Rhodin
,
J. A. G.
, 1980, “
Architecture of the vessel wall
,” in
Handbook of Physiology, The Cardiovascular System
,
H. V.
,
Sparks
, Jr.
,
D. F.
,
Bohr
,
A. D.
Somlyo
, and
S. R.
Geiger
, eds.,
American Physiological Society
, Bethesda, Maryland, Vol.
2
, pp.
1
31
.
18.
Driessen
,
N. J. B.
,
Wilson
,
W.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2004, “
A computational model for collagen fibre remodelling in the arterial wall
,”
J. Theor. Biol.
0022-5193,
226
(
1
), pp.
53
64
.
19.
Finlay
,
H. M.
,
McCullough
,
L.
, and
Canham
,
P. B.
, 1995, “
Three-dimensional collagen organization of human brain arteries at different transmural pressures
,”
J. Vasc. Res.
1018-1172,
32
(
5
), pp.
301
312
.
20.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Stadler
,
M.
, 2002, “
A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis
,”
Eur. J. Mech. A/Solids
0997-7538,
21
(
3
), pp.
441
463
.
21.
van Oijen
,
C. H. G. A.
, 2003, “
Mechanics and design of fiber-reinforced vascular prostheses
,” Ph.D. thesis, Technische Universiteit Eindhoven.
22.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice Hall
, Englewood Cliffs, NJ.
23.
Segal
,
A.
, 1984,
SEPRAN User Manual, Standard Problems and Programmers Guide
,
Ingenieursbureau SEPRA
, Leidschendam, the Netherlands.
24.
Thubrikar
,
M. J.
,
Aouad
,
J.
, and
Nolan
,
S. P.
, 1986, “
Comparison of the in vivo and in vitro mechanical properties of aortic valve leaflets
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
92
(
1
), pp.
29
36
.
25.
Mol
,
A.
,
Bouten
,
C. V.
,
Zund
,
G.
,
Gunter
,
C. I.
,
Visjager
,
J. F.
,
Turina
,
M. I.
,
Baaijens
,
F. P.
, and
Hoerstrup
,
S. P.
, 2003, “
The relevance of large strains in functional tissue engineering of heart valves
,”
Thorac. Cardiovasc. Surg.
0171-6425,
51
(
2
), pp.
78
83
.
26.
Sauren
,
A. A. H. J.
, 1981, “
The mechanical behaviour of the aortic valve
,” Ph.D. thesis, Technische Hogeschool, Eindhoven.
27.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
, 1998, “
The aortic valve microstructure: effects of transvalvular pressure
,”
J. Biomed. Mater. Res.
0021-9304,
41
(
1
), pp.
131
141
.
28.
Orberg
,
J. W.
,
Klein
,
L.
, and
Hiltner
,
A.
, 1982, “
Scanning electron microscopy of collagen fibers in intestine
,”
Connect. Tissue Res.
0300-8207,
9
(
3
), pp.
187
193
.
29.
Sacks
,
M. S.
, and
Gloeckner
,
D. C.
, 1999, “
Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa
,”
J. Biomed. Mater. Res.
0021-9304,
46
(
1
), pp.
1
10
.
30.
Gloeckner
,
D. C.
,
Sacks
,
M. S.
,
Billiar
,
K. L.
, and
Bachrach
,
N.
, 2000, “
Mechanical evaluation and design of a multilayered collagenous repair biomaterial
,”
J. Biomed. Mater. Res.
0021-9304,
52
(
2
), pp.
365
373
.
31.
Sacks
,
M. S.
, and
Chuong
,
C. J.
, 1992, “
Characterization of collagen fiber architecture in the canine diaphragmatic central tendon
,”
ASME J. Biomech. Eng.
0148-0731,
114
(
2
), pp.
183
190
.
32.
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
, 1997, “
An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment and cell contact guidance
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
2
), pp.
137
145
.
33.
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
, 1997, “
A finite element solution for the anisotropic biphasic theory of tissue-equivalent mechanics: the effect of contact guidance on isometric cell traction measurement
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
3
), pp.
261
268
.
34.
Sacks
,
M. S.
, 2003, “
Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
280
287
.
35.
Lanir
,
Y.
, 1983, “
Constitutive equations for fibrous connective tissues
,”
J. Biomech.
0021-9290,
16
(
1
), pp.
1
12
.
36.
Nakatsuji
,
N.
, and
Johnson
,
K. E.
, 1984, “
Experimental manipulation of a contact guidance system in amphibian gastrulation by mechanical tension
,”
Nature (London)
0028-0836,
307
(
5950
), pp.
453
455
.
37.
Rijcken
,
J.
,
Bovendeerd
,
P. H.
,
Schoofs
,
A. J.
,
van Campen
,
D. H.
, and
Arts
,
T.
, 1997, “
Optimization of cardiac fiber orientation for homogeneous fiber strain at beginning of ejection
,”
J. Biomech.
0021-9290,
30
(
10
), pp.
1041
1049
.
38.
Rijcken
,
J.
,
Bovendeerd
,
P. H.
,
Schoofs
,
A. J.
,
van Campen
,
D. H.
, and
Arts
,
T.
, 1999, “
Optimization of cardiac fiber orientation for homogeneous fiber strain during ejection
,”
Ann. Biomed. Eng.
0090-6964,
27
(
3
), pp.
289
297
.
39.
Taber
,
L. A.
, 1998, “
A model for aortic growth based on fluid shear and fiber stresses
,”
J. Biomech. Eng.
0148-0731,
120
(
3
), pp.
348
354
.
40.
Huang
,
C.
, and
Yannas
,
I. V.
, 1977, “
Mechanochemical studies of enzymatic degradation of insoluble collagen fibers
,”
J. Biomed. Mater. Res.
0021-9304,
11
(
1
), pp.
137
154
.
41.
Niklason
,
L. E.
,
Gao
,
J.
,
Abbott
,
W. M.
,
Hirschi
,
K. K.
,
Houser
,
S.
,
Marini
,
R.
, and
Langer
,
R.
, 1999, “
Functional arteries grown in vitro
,”
Science
0036-8075,
284
(
5413
), pp.
489
493
.
42.
Kim
,
B. S.
,
Nikolovski
,
J.
,
Bonadio
,
J.
, and
Mooney
,
D. J.
, 1999, “
Cyclic mechanical strain regulates the development of engineered smooth muscle tissue
,”
Nat. Biotechnol.
1087-0156,
17
(
10
), pp.
979
983
.
43.
Prabhakar
,
V.
,
Grinstaff
,
M. W.
,
Alarcon
,
J.
,
Knors
,
C.
,
Solan
,
A. K.
, and
Niklason
,
L. E.
, 2003, “
Engineering porcine arteries: effects of scaffold modification
,”
J. Biomed. Mater. Res.
0021-9304,
67A
(
1
), pp.
303
311
.
44.
Kolpakov
,
V.
,
Rekhter
,
M. D.
,
Gordon
,
D.
,
Wang
,
W. H.
, and
Kulik
,
T. J.
, 1995, “
Effect of mechanical forces on growth and matrix protein synthesis in the in vitro pulmonary artery. Analysis of the role of individual cell types
,”
Circ. Res.
0009-7330,
77
(
4
), pp.
823
831
.
45.
Carver
,
W.
,
Nagpal
,
M. L.
,
Nachtigal
,
M.
,
Borg
,
T. K.
, and
Terracio
,
L.
, 1991, “
Collagen expression in mechanically stimulated cardiac fibroblasts
,”
Circ. Res.
0009-7330,
69
(
1
), pp.
116
122
.
46.
Doillon
,
C. J.
,
Dunn
,
M. G.
,
Bender
,
E.
and
Silver
,
F. H.
, 1985, “
Collagen fiber formation in repair tissue: development of strength and toughness
,”
Coll. Relat. Res.
0174-173X,
5
(
6
), pp.
481
492
.
47.
Silver
,
F. H.
,
Freeman
,
J. W.
, and
Seehra
,
G. P.
, 2003, “
Collagen self-assembly and the development of tendon mechanical properties
,”
J. Biomech.
0021-9290,
36
(
10
), pp.
1529
1553
.
You do not currently have access to this content.