Measurements of the time-varying flow in a centrifugal blood pump operating as a left ventricular assist device (LVAD) are presented. This includes changes in both the pump flow rate as a function of the left ventricle contraction and the interaction of the rotating impeller and fixed exit volute. When operating with a pulsing ventricle, the flow rate through the LVAD varies from 0-11Lmin during each cycle of the heartbeat. Phase-averaged measurements of mean velocity and some turbulence statistics within several regions of the pump, including the inlet, blade passage, exit volute, and diffuser, are reported at 20 phases of the cardiac cycle. The transient flow fields are compared to the constant flow rate condition that was reported previously in order to investigate the transient effects within the pump. It is shown that the quasi-steady assumption is a fair treatment of the time varying flow field in all regions of this representative pump, which greatly simplifies the comprehension and modeling of this flow field. The measurements are further interpreted to identify the effects that the transient nature of the flow field will have on blood damage. Although regions of recirculation and stagnant flow exist at some phases of the cardiac cycle, there is no location where flow is stagnant during the entire heartbeat.

1.
Araki
,
K.
,
Taenaka
,
Y.
,
Masuzawa
,
T.
,
Inoue
,
K.
,
Nakatani
,
T.
,
Kinoshota
,
M.
,
Akagi
,
H.
,
Baba
,
Y.
,
Sakaki
,
M.
,
Anai
,
H.
, and
Takano
,
H.
, 1993, “
A Flow visualization Study of Centrifugal Blood Pumps Developed for Long-Term Usage
,”
Artif. Organs
0160-564X
17
(
5
), pp.
307
312
.
2.
Ng
,
B. T. H.
,
Chan
,
W. K.
,
Yu
,
S. C. M.
, and
Li
,
H. D.
, 2000, “
Experimental and Computational Studies of the Relative Flow Field in a Centrifugal Blood Pump
,”
Crit. Rev. Biomed. Eng.
0278-940X
28
(
1-2
), pp.
119
125
.
3.
Rose
,
M. L. J.
,
Mackay
,
T. G.
, and
Wheatley
,
D. J.
, 2000, “
Evaluation of Four Blood Pump Geometries: Fluorescent Particle Flow Visualisation Technique
,”
Med. Eng. Phys.
1350-4533
22
(
3
), pp.
201
214
.
4.
Apel
,
J.
,
Neudel
,
F.
, and
Reul
,
H.
, 2001, “
Computational Fluid Dynamics and Experimental Validation of a Microaxial Blood Pump
,”
ASAIO J.
1058-2916
47
, pp.
552
558
.
5.
Asztalos
,
B.
,
Yamane
,
T.
, and
Nishida
,
M.
, 1999, “
Flow Visualization Analysis for Evaluation of Shear and Recirculation in a New Closed-Type, Monopivot Centrifugal Pump
,”
Artif. Organs
0160-564X
23
(
10
), pp.
939
946
.
6.
Baldwin
,
J.
,
Tarbell
,
J.
,
Deutsch
,
S.
, and
Geselowitz
,
D.
, 1989, “
Mean Flow Velocity Patterns Within a Ventricular Assist Device
,”
ASAIO Trans.
0889-7190
35
(
3
), pp.
429
433
.
7.
Nishida
,
M.
,
Yamane
,
T.
,
Tsukamoto
,
Y.
,
Konishi
,
Y.
,
Ito
,
K.
,
Masuzawa
,
T.
,
Tsukiya
,
T.
, and
Taenaka
,
Y.
, 2000, “
Effect of Washout Hole Geometry on a Centrifugal Blood Pump
,”
ASAIO J.
1058-2916
46
(
2
), pp.
172
178
.
8.
Day
,
S. W.
,
McDaniel
,
J. C.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
Landrot
,
N.
, and
Curtas
,
A.
, 2001, “
Particle Image Velocimetry Measurements of Blood Velocity in a Continuous Flow Ventricular Assist Device
,”
ASAIO J.
1058-2916
47
(
4
), pp.
406
411
.
9.
Tsukiya
,
T.
,
Taenaka
,
Y.
,
Tatsumi
,
E.
, and
Takano
,
H.
, 2002, “
Visualization Study of the Transient Flow in the Centirfugal Blood Pump Impeller
,”
ASAIO J.
1058-2916
48
, pp.
431
436
.
10.
Wu
,
Z. J.
,
Antaki
,
J. F.
,
Burgreen
,
G. W.
,
Butler
,
K. C.
,
Thomas
,
D. C.
, and
Griffith
,
B. P.
, 1999, “
Fluid Dynamic Characterization of Operating Conditions for Continuous Flow Blood Pumps
,”
ASAIO J.
1058-2916
45
, pp.
442
449
.
11.
Manning
,
K. B.
, and
Miller
,
G. E.
, 2002, “
Flow Through an Outlet Cannula of a Rotary Ventricular Assist Device
,”
Artif. Organs
0160-564X
26
(
8
), pp.
714
723
.
12.
Orime
,
Y.
,
Takatani
,
S.
,
Tasai
,
K.
,
Ohara
,
Y.
,
Naito
,
K.
,
Mizugugchi
,
K.
,
Meier
,
D.
,
Wernicke
,
J. T.
,
Dann
,
G.
,
Glueck
,
J.
,
Noon
,
G. P.
, and
Nose
,
Y.
, 1994, “
The Baylor Total Artificial Heart
,”
ASAIO J.
1058-2916
40
, pp.
M499
M505
.
13.
Baldwin
,
J. T.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
, 1994, “
LDA Measurements of Mean Velocity and Reynolds Stress-Fields Within an Artificial-Heart Ventricle
,”
ASME J. Biomech. Eng.
0148-0731
116
(
2
), pp.
190
200
.
14.
Maymir
,
J. C.
,
Deutsch
,
S.
,
Meyer
,
R. S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
, 1998, “
Mean Velocity and Reynolds Stress Measurements in the Regurgitant Jets of Tilting Disk Heart Valves in an Artificial Heart Environment
,”
Ann. Biomed. Eng.
0090-6964
26
(
1
), pp.
146
156
.
15.
Mussivand
,
T. D.
, and
Naber
,
B. K. D.
, 1999, “
Fluid Dynamic Optimization of a Ventricular Assist Device Using Particle Image Velocimetry
,”
ASAIO J.
1058-2916
45
(
1
), pp.
25
31
.
16.
Wernert
,
P.
, and
Favier
,
D.
, 1999, “
Considerations About the Phase Averaging Method With Application to LDV and PIV Measurements Over Pitching Airfoils
,”
Exp. Fluids
0723-4864
27
(
6
), pp.
473
83
.
17.
Zhang
,
Z.
,
Eisele
,
K.
, and
Hirt
,
F.
, 1997, “
The Influence of Phase-Averaging Window Size on the Determination of Turbulence Quantities in Unsteady Turbulent flows
,”
Exp. Fluids
0723-4864
22
, pp.
265
267
.
18.
Day
,
S. W.
, and
McDaniel
,
J. C.
, “
PIV Measurements of Flow in a Centrifugal Blood Pump: Steady Flow
,”
ASME J. Biomech. Eng.
0148-0731 (in press).
19.
Adrian
,
R. J.
, 1991, “
Particle Imaging Techniques for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
0066-4189
23
, pp.
261
304
.
20.
Scarano
,
F.
, and
Reithmuller
,
M.
, 1999, “
Iterative Multigrid Approach in PIV Image Processing With Discrete Window Offset
,”
Exp. Fluids
0723-4864
26
, pp.
513
523
.
21.
Day
,
S. W.
,
McDaniel
,
J. C.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
Song
,
X.
,
Lemire
,
P. P.
, and
Miles
,
S. D.
, 2002, “
A Prototype HeartQuest Ventricular Assist Device for Particle Image Velocimetry Measurements
,”
Artif. Organs
0160-564X
26
(
11
), pp.
1002
1005
.
22.
Mills
,
C. J.
,
Gabe
,
I. T.
,
Gault
,
J. H.
,
Mason
,
D. T.
,
Ross
,
J. J.
,
Braunwald
,
E.
, and
Shillingford
,
J. P.
, 1970, “
Pressure-Flow Relationships and Vascular Impedance in Man
,”
Cardiovasc. Res.
0008-6363
4
, pp.
405
417
.
23.
McKay
,
R. G.
,
Aroesty
,
J. M.
,
Heller
,
G. V.
,
Roayl
,
H.
,
Parker
,
A.
,
Silverman
,
K. J.
,
Kolodny
,
G. M.
, and
Grossman
,
W.
, 1984, “
Left Ventricular Pressure-Volume Diagrams and End-Systolic Pressure-Volume Relations in Human Being
,”
J. Am. Coll. Cardiol.
0735-1097
3
(
2
), pp.
301
312
.
24.
Wernet
,
M. P.
, 2000, “
Application of DPIV to study both steady state and transient turbomachinery flows
,”
Opt. Laser Technol.
0030-3992
32
, pp.
497
525
.
25.
Baldwin
,
J. T.
,
Deutsch
,
S.
,
Petrie
,
H. L.
, and
Tarbell
,
J. M.
, 1993, “
Determination of Principal Reynolds Stresses in Pulsatile Flows After Elliptical Filtering of Discrete Velocity Measurements
,”
ASME J. Biomech. Eng.
0148-0731
115
(
4
), pp.
396
403
.
26.
Sinha
,
M.
,
Katz
,
J.
, and
Meneveau
,
C.
, 1998, “
Addressing Passage-Averaged and LES Modeling Issues in Turbomachinery Flows Using Two-Dimensional PIV Data
,”
Proc. ASME Fluids Engineering Division Summer Meeting
, Washington, D.C., FEDSM98-5091.
27.
Stepanoff
,
A. J.
, 1957,
Centrifugal and Axial Flow Pumps
,
Wiley
, New York.
28.
Flack
,
R. D.
,
Hamkins
,
C. P.
, and
Brady
,
D. R.
, 1987, “
Laser Velocimeter Turbulence Measurements in Shrouded and Unshrouded Radial Flow Pump Impellers
,”
Int. J. Heat Fluid Flow
0142-727X
8
(
1
), pp.
16
25
.
29.
Hashimoto
,
S.
,
Maeda
,
H.
, and
Sasada
,
T.
, 1985, “
Effects of Shear Rate on Clot Growth at Foreign Surfaces
,”
Artif. Organs
0160-564X
9
, pp.
345
350
.
30.
Folie
,
B. J.
, and
McIntire
,
L. V.
, 1989, “
Mathematical Analysis of Mural Thrombogenesis. Concentration profiles of Platelet-Activating Agents and Effects of Viscous Shear Flow
,”
Biophys. J.
0006-3495
56
, pp.
1121
1141
.
You do not currently have access to this content.