Magnetically suspended left ventricular assist devices have only one moving part, the impeller. The impeller has absolutely no contact with any of the fixed parts, thus greatly reducing the regions of stagnant or high shear stress that surround a mechanical or fluid bearing. Measurements of the mean flow patterns as well as viscous and turbulent (Reynolds) stresses were made in a shaft-driven prototype of a magnetically suspended centrifugal blood pump at several constant flow rates (39Lmin) using particle image velocimetry (PIV). The chosen range of flow rates is representative of the range over which the pump may operate while implanted. Measurements on a three-dimensional measurement grid within several regions of the pump, including the inlet, blade passage, exit volute, and diffuser are reported. The measurements are used to identify regions of potential blood damage due to high shear stress and∕or stagnation of the blood, both of which have been associated with blood damage within artificial heart valves and diaphragm-type pumps. Levels of turbulence intensity and Reynolds stresses that are comparable to those in artificial heart valves are reported. At the design flow rate (6Lmin), the flow is generally well behaved (no recirculation or stagnant flow) and stress levels are below levels that would be expected to contribute to hemolysis or thrombosis. The flow at both high (9Lmin) and low (3Lmin) flow rates introduces anomalies into the flow, such as recirculation, stagnation, and high stress regions. Levels of viscous and Reynolds shear stresses everywhere within the pump are below reported threshold values for damage to red cells over the entire range of flow rates investigated; however, at both high and low flow rate conditions, the flow field may promote activation of the clotting cascade due to regions of elevated shear stress adjacent to separated or stagnant flow.

1.
Heuser
,
G.
, and
Opitz
,
R.
, 1980, “
A Couette Viscometer for Short Time Shearing of Blood
,”
Biorheology
0006-355X
17
(
2
), pp.
17
24
.
2.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Optiz
,
R.
, and
Reul
,
H.
, 1990, “
Estimation of Shear Stress Related Blood Damage in Heart Valve Prostheses: In Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
0391-3988
13
(
5
), pp.
300
306
.
3.
Goldsmith
,
H. L.
, and
Turitto
,
V. T.
, 1986, “
Rheological Aspects of Thrombosis and Haemostasis: Basic Principles and Applications
,”
Thromb. Haemostasis
0340-6245
55
(
3
), pp.
415
435
.
4.
Berger
,
S. A.
, and
Jou
,
L.-D.
, 2000, “
Flows in Stenotic Vessels
,”
Annu. Rev. Fluid Mech.
0066-4189
32
, pp.
347
382
.
5.
Copeland
,
J. G.
, 1987, “
The Artificial Heart as a Bridge to Transplant
,”
Cardio, Oct.
, pp.
44
47
.
6.
Brownell
,
R.
,
Flack
,
R.
, and
Kostrowsky
,
G.
, 1985, “
Flow Visualization in the Tongue Region of a Centrifugal Pump
,”
J. Therm. Eng.
4
(
2
), pp.
35
45
.
7.
Akhras
,
A. R.
,
El Hajem
,
M.
,
Morel
,
R.
, and
Champagne
,
J. Y.
, 2001, “
Internal Flow Investigation of a Centrifugal Pump at the Design Point
,”
J. Visualization
4
(
1
), pp.
91
98
.
8.
Hamkins
,
C.
, and
Flack
,
R.
, 1987, “
Laser Velocimeter Measurements in Shrouded and Unshrouded Radial Flow Pump Impellers
,”
ASME J. Turbomach.
0889-504X
109
(
1
), pp.
70
76
.
9.
Miner
,
S. M.
,
Beaudoin
,
R. J.
, and
Flack
,
R. D.
, 1989, “
Laser Velocimetry Measurements in a Centrifugal Flow Pump
,”
ASME J. Turbomach.
0889-504X
111
(
3
), pp.
205
212
.
10.
Flack
,
R. D.
,
Miner
,
S. M.
, and
Beaudoin
,
R. J.
, 1992, “
Turbulence Measurements in a Centrifugal Pump With a Synchronously Orbiting Impeller
,”
ASME J. Turbomach.
0889-504X
114
, pp.
350
359
.
11.
Ojeda
,
W. D.
,
Flack
,
R. D.
, and
Miner
,
S. M.
, 1995, “
Laser Velocimetry Measurements in a Double Volute Centrifugal Pump
,”
Int. J. Rotating Mach.
1023-621X
1
(
3–4
), pp.
199
214
.
12.
Rajendran
,
V.
, and
Patel
,
V.
, 2000, “
Measurement of Vortices in Model Pump-Intake Bay by PIV
,”
J. Hydraul. Eng.
0733-9429
126
(
5
), pp.
322
334
.
13.
Dong
,
R.
,
Chu
,
S.
, and
Katz
,
J. S.
, 1992, “
Quantitative Visualization of the Flow Within the Volute of a Centrifugal Pump. Part A: Technique
,”
ASME J. Fluids Eng.
0098-2202
114
(
3
), pp.
390
395
.
14.
Dong
,
R.
,
Chu
,
S.
, and
Katz
,
J. S.
, 1997, “
Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump
,”
ASME J. Turbomach.
0889-504X
119
(
3
), pp.
506
515
.
15.
Orime
,
Y.
,
et al.
, 1994, “
The Baylor Total Artificial Heart
,”
ASAIO J.
1058-2916
40
, pp.
M499
M505
.
16.
Rose
,
M. L. J.
,
Mackay
,
T. G.
, and
Wheatley
,
D. J.
, 2000, “
Evaluation of Four Blood Pump Geometries: Fluorescent Particle Flow Visualisation Technique
,”
Med. Eng. Phys.
1350-4533
22
(
3
), pp.
201
214
.
17.
Baldwin
,
J. T.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
, 1994, “
LDA Measurements of Mean Velocity and Reynolds Stress-Fields Within an Artificial-Heart Ventricle
,”
ASME J. Biomech. Eng.
0148-0731
116
(
2
), pp.
190
200
.
18.
Mussivand
,
T.
,
Day
,
K. D.
, and
Naber
,
B. C.
, 1999, “
Fluid Dynamic Optimization of a Ventricular Assist Device Using Particle Image Velocimetry
,”
ASAIO J.
1058-2916
45
(
1
), pp.
25
31
.
19.
Maymir
,
J. C.
,
Deutsch
,
S.
,
Meyer
,
R. S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
, 1998, “
Mean Velocity and Reynolds Stress Measurements in the Regurgitant Jets of Tilting Disk Heart Valves in an Artificial Heart Environment
,”
Ann. Biomed. Eng.
0090-6964
26
(
1
), pp.
146
156
.
20.
Nishida
,
M.
,
et al.
, 2000, “
Effect of Washout Hole Geometry on a Centrifugal Blood Pump
,”
ASAIO J.
1058-2916
46
(
2
), pp.
172
178
.
21.
Araki
,
K.
,
et al.
, 1993, “
A Flow Visualization Study of Centrifugal Blood Pumps Developed for Long-Term Usage
,”
Artif. Organs
0160-564X
17
(
5
), pp.
307
312
.
22.
Asztalos
,
B.
,
et al.
, 1996, “
Flow Visualization Study of Centrifugal Blood Pump for Total Artificial Heart
,”
Proc. 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
IEEE
, New York, pp.
1347
1348
.
23.
Ng
,
B. T. H.
,
Chan
,
W. K.
,
Yu
,
S. C. M.
, and
Li
,
H. D.
, 2000, “
Experimental and Computational Studies of the Relative Flow Field in a Centrifugal Blood Pump
,”
Crit. Rev. Biomed. Eng.
0278-940X
28
(
1–2
), pp.
119
125
.
24.
Apel
,
J.
,
Neudel
,
F.
, and
Reul
,
H.
, 2001, “
Computational Fluid Dynamics and Experimental Validation of a Microaxial Blood Pump
,”
ASAIO J.
1058-2916
47
, pp.
552
558
.
25.
Baldwin
,
J.
,
Tarbell
,
J.
,
Deutsch
,
S.
, and
Geselowitz
,
D.
, 1989, “
Mean Flow Velocity Patterns Within a Ventricular Assist Device
,”
ASAIO Trans.
0889-7190
35
(
3
), pp.
429
433
.
26.
Manning
,
K. B.
, and
Miller
,
G. E.
, 2002, “
Flow Through an Outlet Cannula of a Rotary Ventricular Assist Device
,”
Artif. Organs
0160-564X
26
(
8
), pp.
714
723
.
27.
Day
,
S. W.
,
et al.
, 2001, “
Particle Image Velocimetry Measurements of Blood Velocity in a Continuous Flow Ventricular Assist Device
,”
ASAIO J.
1058-2916
47
(
4
), pp.
406
411
.
28.
Asztalos
,
B.
,
Yamane
,
T.
, and
Nishida
,
M.
, 1999, “
Flow Visualization Analysis for Evaluation of Shear and Recirculation in a New Closed-Type, Monopivot Centrifugal Pump
,”
Artif. Organs
0160-564X
23
(
10
), pp.
939
946
.
29.
Bearnson
,
G.
,
et al.
, 2000, “
Progress on the Heartquest VAD - A Centrifugal Pump With Magnetically Suspended Rotor
,”
ASAIO J.
1058-2916
46
(
2
), p.
192
.
30.
Song
,
X.
,
Wood
,
H. G.
, and
Olsen
,
D.
, 2003, “
Computational Fluid Dynamics (CFD) Study of the 4th Generation Prototype of a Continuous Flow Ventricular Assist Device (VAD)
,”
ASME J. Biomech. Eng.
0148-0731
126
(
2
), pp.
180
187
.
31.
Day
,
S. W.
,
et al.
, 2002, “
A Prototype HeartQuest Ventricular Assist Device for Particle Image Velocimetry Measurements
,”
Artif. Organs
0160-564X
26
(
11
), pp.
1002
1005
.
32.
Day
,
S. W.
,
Lemire
,
P. P.
,
Flack
,
R. D.
, and
McDaniel
,
J. C.
, 2003, “
Effect of Reynolds Number on Performance of a Small Centrifugal Pump
,”
Proc. 4th ASME∕JSME Joint Fluids Engineering Conference, Hawaii
,
ASME
, New York.
33.
Akimoto
,
T.
,
et al.
, 1999, “
Rotary Blood Pump Flow Spontaneously Increases During Exercise Under Constant Pump Speed - Results of a Chronic Study
,”
Artif. Organs
0160-564X
23
(
8
), pp.
797
801
.
34.
Day
,
S. W.
, and
McDaniel
,
J. C.
, “
PIV Measurements of Flow in a Centrifugal Blood Pump: Time-Varying Flow
,”
ASME J. Biomech. Eng.
0148-0731 (in press).
35.
Adrian
,
R. J.
, 1991, “
Particle Imaging Techniques for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
0066-4189
23
, pp.
261
304
.
36.
Keane
,
R. D.
, and
Adrian
,
R. J.
, 1992, “
Theory of Cross-Correlation Analysis of PIV Images
,”
Appl. Sci. Res.
0003-6994
49
, pp.
191
215
.
37.
Durst
,
F.
,
Melling
,
A.
, and
Whitelaw
,
J.
, 1976,
Principles and Practice of Laser Doppler Anemometry
,
Academic Press
, New York.
38.
Baldwin
,
J. T.
,
Deutsch
,
S.
,
Petrie
,
H. L.
, and
Tarbell
,
J. M.
, 1993, “
Determination of Principal Reynolds Stresses in Pulsatile Flows After Elliptical Filtering of Discrete Velocity Measurements
,”
ASME J. Biomech. Eng.
0148-0731
115
(
4
), pp.
396
403
.
39.
Narrow
,
T. L.
,
Yoda
,
M.
, and
Abdel-Khalik
,
S. I.
, 2000, “
A Simple Model for the Refractive Index of Sodium Iodide Aqueous Solutions
,”
Exp. Fluids
0723-4864
28
, pp.
282
283
.
40.
Durst
,
F.
,
Muller
,
R.
, and
Jovanovic
,
J.
, 1988, “
Determination of the Measuring Position in Laser-Doppler Anemometry
,”
Exp. Fluids
0723-4864
6
(
2
), pp.
105
110
.
41.
Budwig
,
R.
, 1994, “
Refractive Index Matching Methods for Liquid Flow Investigations
,”
Exp. Fluids
0723-4864
17
, pp.
350
355
.
42.
Wells
,
R. E.
, and
Merrill
,
E. W.
, 1961, “
Shear Rate Dependence of the Viscosity of Whole Blood and Plasma
,”
Science
0036-8075
133
, pp.
763
764
.
43.
Scarano
,
F.
, and
Reithmuller
,
M.
, 1999, “
Iterative Multigrid Approach in PIV Image Processing With Discrete Window Offset
,”
Exp. Fluids
0723-4864
26
, pp.
513
523
.
44.
Wernet
,
M.
, 2000, “
Application of DPIV to Study Both Steady State and Transient Turbomachinery Flows
,”
Opt. Laser Technol.
0030-3992
32
, pp.
497
525
.
45.
Bendat
,
J. S.
, and
Piersol
,
A. G.
, 1971,
Random Data: Analysis and Measurement Procedures
,
Wiley Interscience
, New York.
46.
Day
,
S. W.
, 2003, “
Measurements of Flow in a Centrifugal Blood Pump Using Particle Image Velocimetry
,” Ph.D. thesis, University of Virginia, Charlottesville.
47.
Stepanoff
,
A. J.
, 1957,
Centrifugal and Axial Flow Pumps
,
Wiley
, New York.
48.
Huang
,
H.
,
Dabiri
,
D.
, and
Gharib
,
M.
, 1997, “
On Errors of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233
8
(
12
), pp.
1427
1440
.
49.
Adrian
,
R. J.
, 1997, “
Dynamic Ranges and Spatial Resolution of Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233
8
(
12
), pp.
1393
1398
.
50.
Boillot
,
A.
, and
Prasad
,
A. K.
, 1996, “
Optimization Procedure for Pulse Separation in Cross-Correlation PIV
,”
Exp. Fluids
0723-4864
21
, pp.
81
93
.
51.
Hart
,
D. P.
, 2000, “
PIV Error Correction
,”
Exp. Fluids
0723-4864
29
, pp.
13
22
.
52.
Cowen
,
E.
, and
Monismith
,
S.
, 1997, “
A Hybrid Digital Particle Tracking Velocimetry Technique
,”
Exp. Fluids
0723-4864
22
, pp.
199
211
.
53.
Lourenco
,
L. M.
, and
Krothapalli
,
A.
, 2000, “
TRUE Resolution PIV: A Mesh-Free Second-Order Accurate Algorithm
,”
Proc. 10th International Symposium of Laser Techniques in Fluid Mechanics, Lisbon
, Portugal, paper 13.5.
54.
Raffel
,
M.
,
Willert
,
C.
, and
Kompenhans
,
J.
, 1998,
Particle Image Velocimetry: A Practical Guide
,
Springer
, New York.
55.
Adrian
,
R. J.
, 1988, “
Statistical Properties of Particle Image Velocimetry Measurements in Turbulent Flow
,”
Proc. Laser Anemometry in Fluid Dynamics III, Lisbon
, Portugal, pp.
115
129
.
56.
Shannon
,
C. E.
, 1949, “
Communication in the Presence of Noise
,”
Proc. Inst. Radio Eng.
37
(
1
), pp.
10
21
.
57.
Tennekes
,
H.
, and
Lumley
,
J. L.
, 1972,
A First Course in Turbulence
,
MIT
, Cambridge, MA.
58.
Lecordier
,
B.
,
Demare
,
D.
,
Vervisch
,
L. M. J.
,
Reveillon
,
J.
, and
Trinite
,
M.
, 2001, “
Estimation of the Accuracy of PIV Treatments for Turbulent Flow Studies by Direct Numerical Simulation of Multi-Phase Flow
,”
Meas. Sci. Technol.
0957-0233
12
, pp.
1382
1391
.
59.
Saarenrinne
,
P.
,
Piirto
,
M.
, and
Eloranta
,
H.
, 2001, “
Experience of Turbulence Measurement With PIV
,”
Meas. Sci. Technol.
0957-0233
12
, pp.
1904
1910
.
60.
Fox
,
R. W.
, and
McDonald
,
A. T.
, 1992,
Introduction to Fluid Mechanics
,
Wiley
, New York.
61.
Yoganathan
,
A. P.
,
Woo
,
Y. R.
, and
Sung
,
H. W.
, 1986, “
Turbulent Shear Stress Measurements in the Vicinity of Aortic Heart Valve Protheses
,”
J. Biomech.
0021-9290
19
, pp.
422
433
.
62.
Nygaard
,
H.
,
et al.
, 1990, “
Estimation of Turbulent Shear Stress in Pulsatile Flow Immediately Downstream of Two Artificial Aortic Valves in vitro
,”
J. Biomech.
0021-9290
23
(
12
), pp.
1231
1238
.
63.
Leverett
,
L. B.
,
Hellums
,
J. D.
,
Alfrey
,
C. P.
, and
Lynch
,
E. C. U.
, 1972, “
Red Blood Cell Damage by Shear Stress
,”
Biophys. J.
0006-3495
12
(
3
), pp.
257
273
.
64.
Wurzinger
,
L. J.
,
Blasberg
,
P.
, and
Schmid-Schonbein
,
H. U.
, 1985, “
Towards a Concept of Thrombosis in Accelerated Flow: Rheology, Fluid Dynamics, and Biochemistry
,”
Biorheology
0006-355X
22
(
5
), pp.
437
450
.
65.
Sutera
,
S. P.
, and
Mehrjardi
,
M. H.
, 1975, “
Deformation and Fragmentation of Human Red Blood Cells in Turbulent Shear Flow
,”
Biophys. J.
0006-3495
15
, pp.
1
10
.
66.
Sallam
,
A. M.
,
and Hwang
,
N. H. C.
, 1984, “
Human Red Cell Hemolysis in a Turbulent Shear Flow: Contribution of Reynolds Shear Stresses
,”
Biorheology
0006-355X
21
, pp.
783
797
.
67.
Grigioni
,
M.
,
Daniele
,
C.
,
D’Avenio
,
G.
, and
Barbaro
,
V.
, 1999, “
A Discussion on the Threshold Limit for Hemolyis Related to Reynolds Shear Stress
,”
J. Biomech.
0021-9290
32
(
10
), pp.
1107
1112
.
68.
Lu
,
P. C.
,
Lai
,
H. C.
, and
Liu
,
J. S.
, 2001, “
A Reevaluation and Discussion on the Threshold Limit for Hemolysis in a Turbulent Shear Flow
,”
J. Biomech.
0021-9290
34
(
10
), p.
1364
.
69.
Wurzinger
,
L. J.
, and
Schimid-Schoenbein
,
H.
, 1990, “
The Role of Fluid Dynamics in Triggering and Amplifying Hemostatic Reactions in Thrombogenesis
,”
Blood Flow in Large Arteries: Applications to Atherogenesis and Clinical Medicine
,
D. W.
Liepsch
, ed.,
Karger
, New York, pp.
215
226
.
70.
Peskin
,
C. S.
, 1982, “
The Fluid Dynamics of Heart Valves: Experimental, Theoretical, and Computational Methods
,”
Annu. Rev. Fluid Mech.
0066-4189
14
, pp.
235
259
.
71.
Healy
,
T. M.
,
Fontaine
,
A. A.
,
Walton
,
S. P.
, and
Yoganathan
,
A. P.
, 1998, “
Visualization of the Hinge Flow in a 5:1 Scaled Model of the Medtronic Parallel Bileaflet Heart Valve Prothesis
,”
Exp. Fluids
0723-4864
25
(
5∕6
), pp.
512
518
.
72.
Baldwin
,
J. T.
,
Tarbell
,
J. M.
,
Deutsch
,
S.
, and
Geselowitz
,
D. B.
, 1991, “
Mean Velocities and Reynolds Stresses Within Regurgitant Jets Produced by Tilting Disc Valves
,”
ASAIO Trans.
0889-7190
37
(
3
), pp.
M348
M349
.
73.
Schoephoerster
,
R. T.
, and
Chandran
,
K.
, 1991, “
Velocity and Turbulence Measurements Past Mitral Valve Prostheses in a Model Left Ventricle
,”
J. Biomech.
0021-9290
24
(
7
), pp.
549
562
.
74.
Mandrusov
,
E.
,
Puszkin
,
E.
,
Vroman
,
L.
, and
Leonard
,
E.
, 1996, “
Separated Flows in Artificial Organs: A Cause of Early Thrombogenesis?
,”
ASAIO J.
1058-2916
42
(
5
), pp.
506
513
.
75.
Travis
,
B. R.
,
et al.
, 2001, “
Bileaflet Aortic Valve Prosthesis Pivot Geometry Influences Platelet Secretion and Anionic Phospholipid Exposure
,”
Ann. Biomed. Eng.
0090-6964
29
, pp.
657
664
.
76.
Krafczyk
,
M.
,
Cerrolaza
,
M.
,
Schulz
,
M.
, and
Rank
,
E.
, 1998, “
Analysis of 3D Transient Blood Flow Passing Through an Artificial Aortic Valve by Lattice-Boltzmann Methods
,”
J. Biomech.
0021-9290
31
(
5
), pp.
453
462
.
77.
Aluri
,
S.
, and
Chandran
,
K.
, 2001, “
Numerical Simulation of Mechanical Mitral Heart Valve Closure
,”
Ann. Biomed. Eng.
0090-6964
29
(
8
), pp.
665
676
.
You do not currently have access to this content.