Highly curved cell membrane structures, such as plasmalemmal vesicles (caveolae) and clathrin-coated pits, facilitate many cell functions, including the clustering of membrane receptors and transport of specific extracellular macromolecules by endothelial cells. These structures are subject to large mechanical deformations when the plasma membrane is stretched and subject to a change of its curvature. To enhance our understanding of plasmalemmal vesicles we need to improve the understanding of the mechanics in regions of high membrane curvatures. We examine here, theoretically, the shapes of plasmalemmal vesicles assuming that they consist of three membrane domains: an inner domain with high curvature, an outer domain with moderate curvature, and an outermost flat domain, all in the unstressed state. We assume the membrane properties are the same in these domains with membrane bending elasticity as well as in-plane shear elasticity. Special emphasis is placed on the effects of membrane curvature and in-plane shear elasticity on the mechanics of vesicle during unfolding by application of membrane tension. The vesicle shapes were computed by minimization of bending and in-plane shear strain energy. Mechanically stable vesicles were identified with characteristic membrane necks. Upon stretch of the membrane, the vesicle necks disappeared relatively abruptly leading to membrane shapes that consist of curved indentations. While the resting shape of vesicles is predominantly affected by the membrane spontaneous curvatures, the membrane shear elasticity (for a range of values recorded in the red cell membrane) makes a significant contribution as the vesicle is subject to stretch and unfolding. The membrane tension required to unfold the vesicle is sensitive with respect to its shape, especially as the vesicle becomes fully unfolded and approaches a relative flat shape.

1.
Alberts
,
B.
,
Bray
,
D.
,
Lewis
,
J.
,
Raff
,
M.
,
Roberts
,
K.
, and
Watson
,
J. D.
, 1994,
Molecular Biology of the Cell
, 3rd Edition,
Garland Pub.
, New York, pp.
599
651
.
2.
Cross
,
P. C.
, and
Mercer
,
K. L.
, 1993,
Cell and Tissue Ultrastructure - A Functional Perspective
,
Freeman
, San Francisco, pp.
148
149
.
3.
Schnitzer
,
J. E.
,
Oh
,
P.
,
Pinney
,
E.
, and
Allard
,
J.
, 1994, “
Filipin-sensitive Caveolae-mediated Transport in Endothelium: Reduced Transcytosis, Scavenger Endocytosis, and Capillary Permeability of Select Macromolecules
,”
J. Cell Biol.
0021-9525
127
(
5
), pp.
1217
1232
.
4.
Schnitzer
,
J. E.
,
Oh
,
P.
,
Jacobson
,
B. S.
, and
Dvorak
,
A. M.
, 1995, “
Caveolae From Luminal Plasmalemma of Rat Lung Endothelium: Microdomains Enriched in Caveolin, Ca2+-ATPase, and Inositol Trisphosphate Receptor
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424
92
, pp.
1759
1763
.
5.
Kosawada
,
T.
,
Yoshida
,
O.
,
Skalak
,
R.
, and
Schmid-Schönbein
,
G. W.
, 1999, “
Generation Mechanism of Vascular Endothelial Chained Vesicles and Transendothelial Channel
,”
JSME Int. J., Ser. C
1340-8062
42
(
3
), pp.
796
803
.
6.
Kosawada
,
T.
,
Skalak
,
R.
, and
Schmid-Schönbein
,
G. W.
, 1999, “
Chained Vesicles in Vascular Endothelial Cells
,”
ASME J. Biomech. Eng.
0148-0731
121
(
5
), pp.
472
479
.
7.
Kosawada
,
T.
, and
Matsukawa
,
H.
, 2003, “
A Theoretical Study of Forming Mechanism of Membrane Patent Channels Across Endothelial Cell (Chained Vesicular Channel and Infundibular Channel)
,”
JSME Int. J., Ser. C
1340-8062
46
(
4
), pp.
1218
1225
.
8.
Iglic
,
A.
, 1996, “
A Possible Mechanism Determining the Stability of Spiculated Red Blood Cells
,”
J. Biomech.
0021-9290
30
(
1
), pp.
35
40
.
9.
Kosawada
,
T.
,
Sanada
,
K.
, and
Takano
,
T.
, 2001, “
Large Deformation Mechanics of Plasma Membrane Chained Vesicles in Cells
,”
JSME Int. J., Ser. C
1340-8062
44
(
4
), pp.
928
936
.
10.
Skalak
,
R.
,
Tözeren
,
A.
,
Zarda
,
R. P.
, and
Chien
,
S.
, 1973, “
Strain Energy Function of Red Blood Cell Membranes
,”
Biophys. J.
0006-3495
13
, pp.
245
264
.
11.
Deuling
,
H. J.
, and
Helfrich
,
W.
, 1976, “
Red Blood Cell Shapes as Explaned on the Basis of Curvature Elasticity
,”
Biophys. J.
0006-3495
16
, pp.
861
868
.
12.
Zarda
,
P. R.
,
Chien
,
S.
, and
Skalak
,
R.
, 1977, “
Elastic Deformations of Red Blood Cells
,”
J. Biomech.
0021-9290
10
, pp.
211
221
.
13.
Evans
,
E. A.
, and
Skalak
,
R.
, 1980,
Mechanics and Thermodynamics of Biomembranes
,
CRC Press
, Boca Raton, pp.
141
180
.
14.
Hochmuth
,
R. M.
, 1987, “
Properties of Red Blood Cells
,”
Handbook of Bioengineering
,
R.
Skalak
and
S.
Chien
eds.,
McGraw-Hill
, New York, pp.
12.1
12.17
.
15.
Skalak
,
R.
, 1992, “
Cellular Biomechanics
,”
Encyclopedia of Applied Physics
, Vol.
3
,
VCH Publishers
, pp.
141
167
.
16.
Evans
,
E. A.
, 1980, “
Minimum Energy Analysis of Membrane Deformation Applied to Pipet Aspiration and Surface Adhesion of Red Blood Cells
,”
Biophys. J.
0006-3495
30
, pp.
265
284
.
17.
Wagner
,
R. C.
, and
Casley-Smith
,
J. R.
, 1981, “
Endothelial Vesicles
,”
Microvasc. Res.
0026-2862
21
, pp.
267
298
.
18.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in Fortran
, 2nd Edition,
Cambridge Univ. Press
, Cambridge, England, pp.
745
778
.
19.
Schmid-Schönbein
,
G. W.
,
Kosawada
,
T.
,
Skalak
,
R.
, and
Chien
,
S.
, 1995, “
Membrane Model of Endothelial Cells and Leukocytes. A Proposal for the Origin of a Cortical Stress
,”
ASME J. Biomech. Eng.
0148-0731
117
(
2
), pp.
171
178
.
20.
Wolfram
S.
, 1996,
Mathematica
, 3rd Edition,
Addison-Wesley
, Reading, MA
21.
Palade
,
G. E.
and
Bruns
,
R. R.
, 1968, “
Structural Modulations of Plasmalemmal Vesicles
,”
J. Cell Biol.
0021-9525
37
, pp.
633
646
.
22.
Palade
,
G. E.
,
Simionescu
,
M.
, and
Simionescu
,
N.
, 1979, “
Structural Aspects of the Permeability of the Microvascular Endothelium
,”
Acta Physiol. Scand. Suppl.
0302-2994,
463
, pp.
11
32
.
23.
Lee
,
J.
, and
Schmid-Schönbein
,
G. W.
, 1995, “
Biomechanics of Skeletal Muscle, Capillaries: Hemodynamic Resistance, Endothlial Distensibility, and Pseudopod Formation
,”
Ann. Biomed. Eng.
0090-6964
23
, pp.
226
246
.
24.
Stan
,
R.-V.
,
Kubitza
,
M.
, and
Palade
,
G. E.
, 1999, “
PV-1 is a Component of the Fenestral and Stromatal Diaphragms in Fenestrated Endothelia
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424
96
(
23
), pp.
13203
13207
.
25.
Rizzo
,
V.
,
Sung
A.
,
Oh
,
P.
, and
Schnitzer
J. E.
, 1998, “
Rapid Mechanotransduction In Situ at the Luminal Cell Surface of Vascular Endothelium and its Caveolae
,”
J. Biol. Chem.
0021-9258
273
(
41
), pp.
26323
26329
.
26.
Moazzam
,
F.
,
DeLano
,
F. A.
,
Zweifach
,
B. W.
, and
Schmid-Schönbein
,
G. W.
, 1997, “
The Leukocyte Response to Fluid Stress
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424
94
, pp.
5338
5343
,.
You do not currently have access to this content.