Microscale liquid droplets could act as the SARS carriers in air when released from an infected person through breathing, coughing, or sneezing. In this study, a dynamic model has been built to quantitatively investigate the effect of the relative humidity on the transport of liquid droplets in air using coupled mass transfer and momentum equations. Under higher relative humidity, the exhaled liquid droplets evaporate slowly. Larger droplets fall faster, which could reduce the probability of the droplets inhalation. This may be one of the most important factors that influence the SARS transmission in air.

1.
Erdal
,
S.
, and
Esmen
,
N. A.
,
1995
, “
Human Head Model as an Aerosol Sampler: Calculation of Aspiration Efficiencies for Coarse Particles Using an Idealized Human Head Model Facing the Wind
,”
J. Aerosol Sci.
,
26
, pp.
253
272
.
2.
Stahlhofen
,
W.
,
Rudolf
,
G.
, and
James
,
A. C.
,
1989
, “
Intercomparison of Experimental Regional Aerosol Deposition Data
,”
J. Aerosol Med.
,
2
, pp.
285
308
.
3.
http://helios.bto.ed.ac.uk/bto/microbes/airborne.htm
4.
Moskal
,
A.
, and
Gradon
,
L.
,
2002
, “
Temporary and Spatial Deposition of Aerosol Particles in the Upper Human Airways During Breathing Cycle
,”
J. Aerosol Sci.
,
33
, pp.
1525
1539
.
5.
Andrade
,
E. N.
,
1939
, “
The Velocity Distribution in a Liquid-Into-Liquid Jet. Part 2: The Plane Jet
,”
Proc. Phys. Soc. London
,
51
, pp.
784
793
.
6.
White, F. M., 1974, “Viscous Fluid Flow,” McGraw-Hill, New York, Chap. 3.
7.
Albertson, M. L., Dai, Y. B., Jensen, R. A., and Rouse, H., 1948, “Diffusion of Submerged Jets,” ASCE Proc. 74.
8.
Taylor
,
J. F.
,
Grimmett
,
H. L.
, and
Commings
,
E. W.
,
1951
, “
Isothermal Free Jets of Air Mixing With Air
,”
Chem. Eng. Prog.
,
4
, pp.
175
180
.
9.
Yu, C. Z., 1987, “Turbulent Injection,” by higher education publishing company of China, Beijing, Chap. 2 (in Chinese).
10.
Ralph, A., 2001, “Wet Electrostatic Precipitation Demonstrating Promise for Fine Particulate Control,” The Magazine of Power Generation Technology, January.
11.
Crowe
,
C. T.
,
Sharma
,
M. P.
, and
Stock
,
D. E.
,
1977
, “
The Particle-Source-in-Cell Model for Gas-Droplet Flows
,”
ASME J. Fluids Eng.
,
99
, pp.
325
332
.
12.
Berlemont
,
A.
,
Grancher
,
M.-S.
, and
Gouesbet
,
G.
,
1991
, “
On the Lagrangian Simulation of Turbulence Influence on Droplet Evaporation
,”
Int. J. Heat Mass Transfer
,
34
, pp.
2805
2812
.
13.
Xu
,
X.
, and
Carey
,
V. P.
,
1991
, “
Numerical Simulation of Mixing of Coaxial Air Flows With Condensation
,”
Int. J. Heat Mass Transfer
,
34
, pp.
1823
1838
.
14.
Ranz
,
W. E.
, and
Marshall
, Jr.,
W. R.
,
1952
, “
Evaporation From Drops, Part I
,”
Chem. Eng. Prog.
,
48
, pp.
141
146
.
15.
Steven, C. C., and Paymod, P. C., 2000, Numerical Methods for Engineers, 3rd ed., McGraw-Hill, New York.
16.
Burger
,
M.
,
Schmehl
,
R.
,
Prommersberger
,
P.
,
Schaefer
,
O.
,
Koch
,
R.
, and
Witting
,
S.
,
2003
, “
Droplet Evaporation Modeling by the Distillation Curve Model: Accounting for Kerosene Fuel and Elevated Pressures
,”
Int. J. Heat Mass Transfer
,
46
, pp.
4403
4412
.
17.
http://www.diamondmedicalstaffing.com/pdfs/Standard Precautions 1.pdf
You do not currently have access to this content.