The human facet joint capsule is one of the structures in the lumbar spine that constrains motions of vertebrae during global spine loading (e.g., physiological flexion). Computational models of the spine have not been able to include accurate nonlinear and viscoelastic material properties, as they have not previously been measured. Capsules were tested using a uniaxial ramp-hold protocol or a haversine displacement protocol using a commercially available materials testing device. Plane strain was measured optically. Capsules were tested both parallel and perpendicular to the dominant orientation of the collagen fibers in the capsules. Viscoelastic material properties were determined. Parallel to the dominant orientation of the collagen fibers, the complex modulus of elasticity was E*=1.63MPa, with a storage modulus of E=1.25MPa and a loss modulus of: E=0.39MPa. The mean stress relaxation rates for static and dynamic loading were best fit with first-order polynomials: Bε=0.1110ε0.0733 and Bε=0.1249ε+0.0190, respectively. Perpendicular to the collagen fiber orientation, the viscous and elastic secant moduli were 1.81 and 1.00 MPa, respectively. The mean stress relaxation rate for static loading was best fit with a first-order polynomial: Bε=0.04ε0.06. Capsule strength parallel and perpendicular to collagen fiber orientation was 1.90 and 0.95 MPa, respectively, and extensibility was 0.65 and 0.60, respectively. Poisson’s ratio parallel and perpendicular to fiber orientation was 0.299 and 0.488, respectively. The elasticity moduli were nonlinear and anisotropic, and capsule strength was larger aligned parallel to the collagen fibers. The phase lag between stress and strain increased with haversine frequency, but the storage modulus remained large relative to the complex modulus. The stress relaxation rate was strain dependent parallel to the collagen fibers, but was strain independent perpendicularly.

1.
Avramov
,
A. I.
,
Cavanaugh
,
J. M.
,
Ozaktay
,
C. A.
,
Getchell
,
T. V.
, and
King
,
A. I.
,
1992
, “
The Effects of Controlled Mechanical Loading on Group-II, III, and IV Afferent Units From the Lumbar Facet Joint and Surrounding Tissue. An in Vitro Study
,”
J. Bone Jt. Surg.
,
74
, pp.
1464
1471
.
2.
Cavanaugh
,
J. M.
,
1995
, “
Neural Mechanisms of Lumbar Pain
,”
Spine
,
20
(
16
), pp.
1804
1809
.
3.
Revel
,
M.
,
Poiraudeau
,
S.
,
Auleley
,
G. R.
,
Payan
,
C.
,
Denke
,
A.
,
Nguyen
,
M.
,
Chevrot
,
A.
, and
Fermanian
,
J.
,
1998
, “
Capacity of the Clinical Picture to Characterize Low Back Pain Relieved by Facet Joint Anesthesia. Proposed Criteria to Identify Patients With Painful Facet Joints
,”
Spine
,
23
(
18
), pp.
1972
1976
.
4.
Schwarzer
,
A. C.
,
Aprill
,
C. N.
,
Derby
,
R.
,
Fortin
,
J.
,
Kine
,
G.
, and
Bogduk
,
N.
,
1994
, “
The Relative Contributions of the Disc and Zygapophyseal Joint in Chronic Low Back Pain
,”
Spine
,
19
(
7
), pp.
801
806
.
5.
Schwarzer
,
A. C.
,
Derby
,
R.
,
Aprill
,
C. N.
,
Fortin
,
J.
,
Kine
,
G.
, and
Bogduk
,
N.
,
1994
, “
The Value of the Provocation Response in Lumbar Zygapophyseal Joint Injections
,”
Clin. J. Pain
,
10
(
4
), pp.
309
313
.
6.
Yamashita
,
T.
,
Cavanaugh
,
J. M.
,
Ozaktay
,
A. C.
,
Avramov
,
A. I.
,
Getchell
,
T. V.
, and
King
,
A. I.
,
1993
, “
Effect of Substance P on Mechanosensitive Units of Tissues Around and in the Lumbar Facet Joint
,”
J. Orthop. Res.
,
11
(
2
), pp.
205
214
.
7.
Pickar
,
J. G.
, and
McLain
,
R. F.
,
1995
, “
Responses of Mechanosensitive Afferents to Manipulation of the Lumbar Facet in the Cat
,”
Spine
,
20
(
22
), pp.
2379
2385
.
8.
Gilbertson
,
L. G.
,
Goel
,
V. K.
,
Kong
,
W. Z.
, and
Clausen
,
J. D.
,
1995
, “
Finite Element Methods in Spine Biomechanics Research
,”
Crit. Rev. Biomed. Eng.
,
23
(
5–6
), pp.
411
473
.
9.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1998
, “
Finite Element Modeling Approaches of Human Cervical Spine Facet Joint Capsule
,”
J. Biomech.
,
31
(
4
), pp.
371
376
.
10.
Myklebust
,
J. B.
,
Pintar
,
F.
,
Yoganandan
,
N.
,
Cusick
,
J. F.
,
Maiman
,
D.
,
Myers
,
T. J.
, and
Sances
, Jr.,
A.
,
1988
, “
Tensile Strength of Spinal Ligaments
,”
Spine
,
13
(
5
), pp.
526
531
.
11.
Weiss
,
J. A.
,
Gardiner
,
J. C.
, and
Bonifasi-Lista
,
C.
,
2002
, “
Ligament Material Behavior is Nonlinear, Viscoelastic and Rate-Independent Under Shear Loading
,”
J. Biomech.
,
35
(
7
), pp.
943
950
.
12.
Purslow
,
P. P.
,
Wess
,
T. J.
, and
Hukins
,
D. W.
,
1998
, “
Collagen Orientation and Molecular Spacing During Creep and Stress-Relaxation in Soft Connective Tissues
,”
J. Exp. Biol.
,
201
(Pt 1), pp.
135
142
.
13.
Woo
,
S. L.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
,
1981
, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medial Collateral Ligament
,”
J. Biomech. Eng.
,
103
(
4
), pp.
293
298
.
14.
Provenzano
,
P.
,
Lakes
,
R.
,
Keenan
,
T.
, and
Vanderby
, Jr.,
R.
,
2001
, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
,
29
(
10
), pp.
908
914
.
15.
Yamashita
,
T.
,
Minaki
,
Y.
,
Ozaktay
,
A. C.
,
Cavanaugh
,
J. M.
, and
King
,
A. I.
,
1996
, “
A Morphological Study of the Fibrous Capsule of the Human Lumbar Facet Joint
,”
Spine
,
21
(
5
), pp.
538
543
.
16.
Kotani
,
Y.
,
Cunningham
,
B. W.
,
Cappuccino
,
A.
,
Kaneda
,
K.
, and
McAfee
,
P. C.
,
1998
, “
The Effects of Spinal Fixation and Destabilization on the Biomechanical and Histologic Properties of Spinal Ligaments. An in Vivo Study
,”
Spine
,
23
(
6
), pp.
672
682
.
17.
Panjabi
,
M. M.
,
Krag
,
M.
,
Summers
,
D.
, and
Videman
,
T.
,
1985
, “
Biomechanical Time-Tolerance of Fresh Cadaveric Human Spine Specimens
,”
J. Orthop. Res.
,
3
(
3
), pp.
292
300
.
18.
Little, J. S., Ianuzzi, A., and Khalsa, P. S., “Material Properties: Optically Measuring Facet Joint Capsule Plane Strain Using Image Correlation,” (Abstract), Biomedical Engineering Society Annual Fall Conference, 2003.
19.
Gaudette
,
G. R.
,
Todaro
,
J.
,
Krukenkamp
,
I. B.
, and
Chiang
,
F. P.
,
2001
, “
Computer Aided Speckle Interferometry: A Technique for Measuring Deformation of the Surface of the Heart
,”
Ann. Biomed. Eng.
,
29
(
9
), pp.
775
780
.
20.
Flynn
,
D. M.
,
Peura
,
G. D.
,
Grigg
,
P.
, and
Hoffman
,
A. H.
,
1998
, “
A Finite Element Based Method to Determine the Properties of Planar Soft Tissue
,”
J. Biomech. Eng.
,
120
(
2
), pp.
202
210
.
21.
Ianuzzi
,
A.
,
Little
,
J. S.
,
Chui
,
J. B.
,
Baitner
,
A.
,
Kawchuk
,
G.
, and
Khalsa
,
P. S.
,
2004
, “
Human Lumbar Facet Joint Capsule Strains: I: During Normal Physiologic Motions
,”
Spine J
,
4
(
2
),
141
152
.
22.
Little
,
J. S.
,
Ianuzzi
,
A.
,
Chui
,
J. B.
,
Baitner
,
A.
, and
Khalsa
,
P. S.
,
2004
, “
Human Lumbar Facet Joint Capsule Strains: II. Alterations in Strain Subsequent to Anterior Interbody Fixation
,”
Spine J
,
4
(
2
),
153
162
.
23.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, Springer Verlag, New York.
24.
Yahia
,
L. H.
,
Audet
,
J.
, and
Drouin
,
G.
,
1991
, “
Rheological Properties of the Human Lumbar Spine Ligaments
,”
J. Biomed. Eng.
,
13
(
5
), pp.
399
406
.
25.
Donahue
,
T. L.
,
Gregersen
,
C.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2001
, “
Comparison of Viscoelastic, Structural, and Material Properties of Double-Looped Anterior Cruciate Ligament Grafts Made From Bovine Digital Extensor and Human Hamstring Tendons
,”
J. Biomech. Eng.
,
123
(
2
), pp.
162
169
.
26.
Downs
,
J. C.
,
Suh
,
J. K.
,
Thomas
,
K. A.
,
Bellezza
,
A. J.
,
Burgoyne
,
C. F.
, and
Hart
,
R. T.
,
2003
, “
Viscoelastic Characterization of Peripapillary Sclera: Material Properties by Quadrant in Rabbit and Monkey Eyes
,”
J. Biomech. Eng.
,
125
(
1
), pp.
124
131
.
27.
Lings
,
S.
, and
Leboeuf-Yde
,
C.
,
2000
, “
Whole-Body Vibration and Low Back Pain: A Systematic, Critical Review of the Epidemiological Literature 1992–1999
,”
Int. Arch. Occup. Environ. Health
,
73
(
5
), pp.
290
297
.
28.
Mansfield
,
N. J.
, and
Griffin
,
M. J.
,
2000
, “
Non-Linearities in Apparent Mass and Transmissibility During Exposure to Whole-Body Vertical Vibration
,”
J. Biomech.
,
33
(
8
), pp.
933
941
.
29.
Sanjeevi
,
R.
,
1982
, “
A Viscoelastic Model for the Mechanical Properties of Biological Materials
,”
J. Biomech.
,
15
(
2
), pp.
107
109
.
30.
Glantz, S. A., 1997, Primer of Biostatistics, McGraw-Hill, New York.
31.
Fung, Y. C., 1981, “Quasi-Linear Viscoelasticity of Soft Tissues,” In Biomechanics: Mechanical Properties of Living Tissues., Springer-Verlag, New York, pp. 226–238.
32.
Provenzano
,
P. P.
,
Lakes
,
R. S.
,
Corr
,
D. T.
, and
Vanderby
, Jr.,
R.
,
2002
, “
Application of Nonlinear Viscoelastic Models to Describe Ligament Behavior
,”
Biomechanics and Modeling in Mechanobiology
,
1
(
1
), pp.
45
57
.
33.
Yoganandan
,
N.
,
Kumaresan
,
S.
, and
Pintar
,
F. A.
,
2000
, “
Geometric and Mechanical Properties of Human Cervical Spine Ligaments
,”
J. Biomech. Eng.
,
122
(
6
), pp.
623
629
.
34.
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Myers
,
T.
,
Elhagediab
,
A.
, and
Sances
, Jr.,
A.
,
1992
, “
Biomechanical Properties of Human Lumbar Spine Ligaments
,”
J. Biomech.
,
25
(
11
), pp.
1351
1356
.
35.
Johnson
,
G. A.
,
Tramaglini
,
D. M.
,
Levine
,
R. E.
,
Ohno
,
K.
,
Choi
,
N. Y.
, and
Woo
,
S. L.
,
1994
, “
Tensile and Viscoelastic Properties of Human Patellar Tendon
,”
J. Orthop. Res.
,
12
(
6
), pp.
796
803
.
36.
Monleon
,
P. M.
, and
Diaz
,
C. R.
,
1990
, “
Nonlinear Viscoelastic Behavior of the Flexor Tendon of the Human Hand
,”
J. Biomech.
,
23
, pp.
773
781
.
37.
Pini
,
M.
,
Wiskott
,
H. W.
,
Scherrer
,
S. S.
,
Botsis
,
J.
, and
Belser
,
U. C.
,
2002
, “
Mechanical Characterization of Bovine Periodontal Ligament
,”
J. Periodontal Res.
,
37
(
4
), pp.
237
244
.
38.
Bader
,
D. L.
, and
Bowker
,
P.
,
1983
, “
Mechanical Characteristics of Skin and Underlying Tissues in Vivo
,”
Biomaterials
,
4
(
4
), pp.
305
308
.
39.
Lanir
,
Y.
,
1976
, “
Biaxial Stress-Relaxation in Skin
,”
Ann. Biomed. Eng.
,
4
(
3
), pp.
250
270
.
40.
Stabile
,
K. J.
,
Pfaeffle
,
J.
,
Weiss
,
J. A.
,
Fischer
,
K.
, and
Tomaino
,
M. M.
,
2004
, “
Bi-Directional Mechanical Properties of the Human Forearm Interosseous Ligament
,”
J. Orthop. Res.
,
22
(
3
), pp.
607
612
.
41.
Viidik
,
A.
,
1972
, “
Simultaneous Mechanical and Light Microscopic Studies of Collagen Fibers
,”
Z. Anat. Entwicklungsgesch
,
136
(
2
), pp.
204
212
.
42.
Maksym
,
G. N.
, and
Bates
,
J. H.
,
1997
, “
A Distributed Nonlinear Model of Lung Tissue Elasticity
,”
J. Appl. Physiol.
,
82
(
1
), pp.
32
41
.
43.
Viidik
,
A.
,
1969
, “
On the Rheology and Morphology of Soft Collagenous Tissue
,”
J. Anat.
,
105
(
1
), p.
184
184
.
44.
Viidik
,
A.
,
1973
, “
Functional Properties of Collagenous Tissues
,”
Int. Rev. Connect. Tissue Res.
,
6
, pp.
127
215
.
45.
Viidik
,
A.
,
Danielson
,
C. C.
, and
Oxlund
,
H.
,
1982
, “
On Fundamental and Phenomenological Models, Structure and Mechanical Properties of Collagen, Elastin and Glycosaminoglycan Complexes
,”
Biorheology
,
19
(
3
), pp.
437
451
.
46.
Thornton
,
G. M.
,
Shrive
,
N. G.
, and
Frank
,
C. B.
,
2002
, “
Ligament Creep Recruits Fibres at Low Stresses and Can Lead to Modulus-Reducing Fibre Damage at Higher Creep Stresses: A Study in Rabbit Medial Collateral Ligament Model
,”
J. Orthop. Res.
,
20
(
5
), pp.
967
974
.
47.
Fung
,
Y. C.
,
1988
, “
Microrheology and Constitutive Equation of Soft Tissue
,”
Biorheology
,
25
(
1–2
), pp.
261
270
.
48.
Haut
,
R. C.
, and
Little
,
R. W.
,
1972
, “
A Constitutive Equation for Collagen Fibers
,”
J. Biomech.
,
5
(
5
), pp.
423
430
.
49.
Winkelstein
,
B. A.
,
Nightingale
,
R. W.
,
Richardson
,
W. J.
, and
Myers
,
B. S.
,
2000
, “
The Cervical Facet Capsule and its Role in Whiplash Injury: A Biomechanical Investigation
,”
Spine
,
25
(
10
), pp.
1238
1246
.
50.
Qin
,
Y. X.
, and
Khalsa
,
P. S.
,
1999
, “
Nonlinear, Orthotropic, Phenomenological Model of Facet Joint Capsule
,”
Annals of Biomedical Engineering
,
29
(
S1
), p.
88
88
.
51.
Panjabi
,
M. M.
,
Crisco
, III,
J. J.
,
Lydon
,
C.
, and
Dvorak
,
J.
,
1998
, “
The Mechanical Properties of Human Alar and Transverse Ligaments at Slow and Fast Extension Rates
,”
Clinical Biomechanics
,
13
(
2
), pp.
112
120
.
52.
Yoganandan
,
N.
,
Pintar
,
F.
,
Butler
,
J.
,
Reinartz
,
J.
,
Sances
, Jr.,
A.
, and
Larson
,
S. J.
,
1989
, “
Dynamic Response of Human Cervical Spine Ligaments
,”
Spine
,
14
(
10
), pp.
1102
1110
.
53.
McCutchen
,
C. W.
,
1982
, “
Cartilage is Poroelastic, Not Viscoelastic (Including an Exact Theorem About Strain Energy and Viscous Loss, and an Order of Magnitude Relation for Equilibration Time)
,”
J. Biomech.
,
15
(
4
), pp.
325
327
.
You do not currently have access to this content.