Background: Many diseases that affect the mitral valve are accompanied by the proliferation or degradation of tissue microstructure. The early acoustic detection of these changes may lead to the better management of mitral valve disease. In this study, we examine the nonstationary acoustic effects of perturbing material parameters that characterize mitral valve tissue in terms of its microstructural components. Specifically, we examine the influence of the volume fraction, stiffness and splay of collagen fibers as well as the stiffness of the nonlinear matrix in which they are embedded. Methods and Results: To model the transient vibrations of the mitral valve apparatus bathed in a blood medium, we have constructed a dynamic nonlinear fluid-coupled finite element model of the valve leaflets and chordae tendinae. The material behavior for the leaflets is based on an experimentally derived structural constitutive equation. The gross movement and small-scale acoustic vibrations of the valvular structures result from the application of physiologic pressure loads. Material changes that preserved the anisotropy of the valve leaflets were found to preserve valvular function. By contrast, material changes that altered the anisotropy of the valve were found to profoundly alter valvular function. These changes were manifest in the acoustic signatures of the valve closure sounds. Abnormally, stiffened valves closed more slowly and were accompanied by lower peak frequencies. Conclusion: The relationship between stiffness and frequency, though never documented in a native mitral valve, has been an axiom of heart sounds research. We find that the relationship is more subtle and that increases in stiffness may lead to either increases or decreases in peak frequency depending on their relationship to valvular function.

1.
Cole
,
W. G.
,
Chan
,
D.
,
Hickey
,
A. J.
, and
Wilcken
,
D. E.
,
1984
, “
Collagen Composition of Normal and Myxomatous Human Mitral Heart Valves
,”
Biochem. J.
,
219
, pp.
451
460
.
2.
Fornes
,
P.
,
Heudes
,
D.
,
Fuzellier
,
J. F.
,
Tixier
,
D.
,
Bruneval
,
P.
, and
Carpentier
,
A.
,
1999
, “
Correlation Between Clinical and Histologic Patterns of Degenerative Mitral Valve Insufficiency: A Histomorphometric Study of 130 Excised Segments
,”
Cardiovasc. Pathol.
,
8
, pp.
81
92
.
3.
Barber
,
J. E.
,
Kasper
,
F. K.
,
Ratliff
,
N. B.
,
Cosgrove
,
D. M.
,
Griffin
,
B. P.
, and
Vesely
,
I.
,
2001
, “
Mechanical Properties of Myxomatous Mitral Valves
,”
J. Thorac. Cardiovasc. Surg.
,
122
, pp.
955
962
.
4.
Lis
,
Y.
,
Burleigh
,
D.
,
Parker
,
D. J.
,
Child
,
A. H.
,
Hogg
,
J.
, and
Davies
,
M. J.
,
1987
, “
Biochemical Characterization of Individual Normal, Floppy and Rheumatic Human Mitral Valves
,”
Biochem. J.
,
244
, pp.
597
603
.
5.
Rabkin
,
E.
,
Aikawa
,
M.
,
Stone
,
J. R.
,
Fukumoto
,
Y.
,
Libby
,
P.
, and
Schoen
,
F. J.
,
2001
, “
Activated Interstitial Myofibroblasts Express Catabolic Enzymes and Mediate Matrix Remodeling in Myxomatous Heart Valves
,”
Circulation
,
104
, pp.
2525
2532
.
6.
Einstein
,
D. R.
,
Kunzelman
,
K. S.
,
Reinhall
,
P. G.
,
Nicosia
,
M. A.
, and
Cochran
,
R. P.
,
2004
, “
Hemodynamic Determinants of the Mitral Valve Closure Sound: A Finite Element Study
,”
IEEE Med. Biolo. Eng. Comput.
,
42
(
6
), pp.
832
846
.
7.
Einstein
,
D. R.
,
Reinhall
,
P.
,
Nicosia
,
M.
,
Kunzelman
,
K. S.
, and
Cochran
,
R. P.
,
2005
, “
Nonlinear Finite Element Analysis of the Mitral Valve
,”
J. Heart Valve Dis.
,
14
(in press).
8.
Einstein, D. R., 2002, “Nonlinear Acoustic Analysis of the Mitral Valve,” in Bioengineering, University of Washington, Seattle, p. 294.
9.
Kunzelman, K. S., 1991, “Engineering Analysis of Mitral Valve Structure and Function,” in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas.
10.
Sacks
,
M. S.
,
2003
, “
Incorporation of SALS-Derived Fiber Orientation Data Into a Structural Constitutive Model For Planar Collagenous Tissues
,”
J. Biomech. Eng.
,
125
, pp.
280
287
.
11.
Burge, E. C., 1996, “A Microstructural and Biochemical Analysis of the Mitral Valve,” in Bioengineering, University of Washington, Seattle, p. 357.
12.
Kunzelman
,
K. S.
,
Cochran
,
R. P.
,
Murphree
,
S. S.
,
Ring
,
W. S.
,
Verrier
,
E. D.
, and
Eberhart
,
R. C.
,
1993
, “
Differential Collagen Distribution in the Mitral Valve and its Influence on Biomechanical Behavior
,”
J. Heart Valve Dis.
,
2
, pp.
236
244
.
13.
Cochran
,
R. P.
,
Kunzelman
,
K. S.
,
Chuong
,
C. J.
,
Sacks
,
M. S.
, and
Eberhart
,
R. C.
,
1991
, “
Nondestructive Analysis of Mitral Valve Collagen Fiber Orientation
,”
ASAIO Trans.
,
37
, pp.
M447–M448
M447–M448
.
14.
May-Newman
,
K.
, and
Yin
,
F. C.
,
1998
, “
A Constitutive Law For Mitral Valve Tissue
,”
J. Biomech. Eng.
,
120
, pp.
38
47
.
15.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in Fortran 77, Cambridge University Press, Cambridge.
16.
Kunzelman
,
K. S.
, and
Cochran
,
R. P.
,
1990
, “
Mechanical Properties of Basal and Marginal Mitral Valve Chordae Tendineae
,”
ASAIO Trans.
,
36
, pp.
M405–M408
M405–M408
.
17.
Stein
,
P. D.
, and
Sabbah
,
H. N.
,
1978
, “
Accentuation of the Heart Sounds in Anemia
,”
Am. J. Physiol.
,
235
, pp.
H664–H669
H664–H669
.
18.
Kinsler, L. E., 1982, Fundamentals of Acoustics, John Wiley and Sons, New York.
19.
Hlawatsch
,
F.
, and
Boudreaux-Bartels
,
G. F.
,
1992
, “
Linear and Quadratic Time–Frequency Representations
,”
IEEE Signal Process. Mag.
,
92
, pp.
21
67
.
20.
Jones
,
D. L.
, and
Baranuik
,
R. G.
,
1995
, “
An Adaptive Optimal-Kernel Time–Frequency Representation
,”
J. Global Optimization
6
, pp.
1
37
.
21.
Akhtar
,
S.
,
Meek
,
K. M.
, and
James
,
V.
,
1999
, “
Ultrastructure Abnormalities in Proteoglycans, Collagen Fibrils, and Elastic Fibers in Normal and Myxomatous Mitral Valve Chordae Tendineae
,”
Cardiovasc. Pathol.
,
8
, pp.
191
201
.
22.
Akhtar
,
S.
,
Meek
,
K. M.
, and
James
,
V.
,
1999
, “
Immunolocalization of Elastin, Collagen Type I and Type III, Fibronectin, and Vitronectin in Extracellular Matrix Components of Normal and Myxomatous Mitral Heart Valve Chordae Tendineae
,”
Cardiovasc. Pathol.
,
8
, pp.
203
211
.
23.
Barber
,
J. E.
,
Ratliff
,
N. B.
,
Cosgrove
, III,
D. M.
,
Griffin
,
B. P.
, and
Vesely
,
I.
,
2001
, “
Myxomatous Mitral Valve Chordae. I: Mechanical Properties
,”
J. Heart Valve Dis.
,
10
, pp.
320
324
.
24.
Grande-Allen
,
K. J.
,
Griffin
,
B. P.
,
Calabro
, III,
A.
,
Ratliff
,
N. B.
,
Cosgrove
,
D. M.
, and
Vesely
,
I.
,
2001
, “
Myxomatous Mitral Valve Chordae. II: Selective Elevation of Glycosaminoglycan Content
,”
J. Heart Valve Dis.
,
10
, pp.
325
332
; discussion pp. 332–333.
25.
Conrado Dos Santos
,
W. L.
,
Verney
,
R. N.
,
Montclos
,
H. De
,
Veysseyre
,
C.
,
Carraz
,
M.
, and
Grimaud
,
J. A.
,
1991
, “
Connective Tissue Changes in Rheumatic Heart Disease
,”
J. Submicrosc. Cytol. Pathol.
,
23
, pp.
213
220
.
26.
Henney
,
A. M.
,
Parker
,
D. J.
, and
Davies
,
M. J.
,
1982
, “
Collagen Biosynthesis in Normal and Abnormal Human Heart Valves
,”
Cardiovasc. Res.
,
16
, pp.
624
630
.
27.
Segal, B. L., 1996, Clinical Recognition of Rheumatic Heart Disease, M. A. Chizner, ed., Laennec Publishing, Classic Teachings in Clinical Cardiology, pp. 991–1015.
28.
Blick
,
E. F.
,
Sabbah
,
H. N.
, and
Stein
,
P. D.
,
1979
, “
One-Dimensional Model of Diastolic Semilunar Valve Vibrations Productive of Heart Sounds
,”
J. Biomech.
,
12
, pp.
223
227
.
29.
Mazumdar
,
J.
, and
Hearn
,
T. C.
,
1978
, “
Mathematical Analysis of Mitral Valve Leaflets
,”
J. Biomech.
,
11
, pp.
291
296
.
30.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
J. Biomech. Eng.
,
122
, pp.
327
335
.
31.
Genest
,
J.
, and
Durand
,
L. G.
,
1985
, “
Relationship of the Left Ventricular and Apical First Sounds to the Left Ventricular Derivative
,”
Med. Biol. Eng. Comput.
,
23
, pp.
95
98
.
32.
May-Newman
,
K.
, and
Yin
,
F. C.
,
1995
, “
Biaxial Mechanical Behavior of Excised Porcine Mitral Valve Leaflets
,”
Am. J. Phys.
,
269
, pp.
H1319–H1327
H1319–H1327
.
33.
Kunzelman
,
K. S.
, and
Cochran
,
R. P.
,
1992
, “
Stress/Strain Characteristics of Porcine Mitral Valve Tissue: Parallel Versus Perpendicular Collagen Orientation
,”
J. Card. Surg.
,
7
, pp.
71
78
.
34.
Dreger
,
S.
,
Taylor
,
P.
,
Allen
,
S.
, and
Yacoub
,
M.
,
2002
, “
Profile and Localization of Matrix Metalloproteinases (MMPs) and Their Tissue Inhibitors (TIMPs) in Human Heart Valves
,”
J. Heart Valve Dis.
,
11
, pp.
875
880
.
35.
Quick
,
D. W.
,
Kunzelman
,
K. S.
,
Kneebone
,
J. M.
, and
Cochran
,
R. P.
,
1997
, “
Collagen Synthesis is Upregulated in Mitral Valves Subjected to Altered Stress
,”
ASAIO J.
,
43
, pp.
181
186
.
36.
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
,
1997
, “
An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction Fibrillar Network Deformation Fibril Alignment and Cell Contact Guidance
,”
J. Biomech. Eng.
,
119
, p.
137
137
.
37.
Sacks, M. S., 2002, personal communication.
38.
Sacks
,
M. S.
, and
Chuong
,
C. J.
,
1998
, “
Orthotropic Mechanical Properties of Chemically Treated Bovine Pericardium
,”
Ann. Biomed. Eng.
,
26
, pp.
892
902
.
39.
Sacks
,
M. S.
,
2001
, “
The Biomechanical Effects of Fatigue on the Porcine Bioprosthetic Heart Valve
,”
J. Long Term Eff. Med. Implants
,
11
, pp.
231
247
.
40.
Mallat, S., 1998, A Wavelet Tour of Signal Processing, Academic Press, New York, NY.
You do not currently have access to this content.