The level of structural detail that can be acquired and incorporated in a finite element (FE) analysis might greatly influence the results of microcomputed tomography (μCT)-based FE simulations, especially when relatively large bones, such as whole vertebrae, are of concern. We evaluated the effect of scanning and reconstruction voxel size on the μCT-based FE analyses of human cancellous tissue samples for fixed- and free-end boundary conditions using different combinations of scan/reconstruction voxel size. We found that the bone volume fraction (BV/TV) did not differ considerably between images scanned at 21 and 50 μm and reconstructed at 21, 50, or 110 μm (−0.5% to 7.8% change from the 21/21 μm case). For the images scanned and reconstructed at 110 μm, however, there was a large increase in BV/TV compared to the 21/21 μm case (58.7%). Fixed-end boundary conditions resulted in 1.8% [coefficient of variation (COV)] to 14.6% (E) difference from the free-end case. Dependence of model output parameters on scanning and reconstruction voxel size was similar between free- and fixed-end simulations. Up to 26%, 30%, 17.8%, and 32.3% difference in modulus (E), and average (VMExp), standard deviation (VMSD) and coefficient of variation (COV) of von Mises stresses, respectively, was observed between the 21/21 μm case and other scan/reconstruction combinations within the same (free or fixed) simulation group. Observed differences were largely attributable to scanning resolution, although reconstruction resolution also contributed significantly at the largest voxel sizes. All 21/21 μm results (taken as the gold standard) could be predicted from the 21/50 21/110 and 50/50 results While BV/TV, VMSD, and from the 21/21 could be predicted by those from the 50/110 and 110/110 simulations as well, prediction of E, VMExp, and COV became marginally significant at 50/110 and nonsignificant at 110/110 In conclusion, calculation of cancellous bone modulus, mean trabecular stress, and other parameters are subject to large errors at 110/110 μm voxel size. However, enough microstructural details for studying bone volume fraction, trabecular shear stress scatter, and trabecular shear stress amplification can be resolved using a 21/110 μm, 50/110 μm, and 110/110 μm voxels for both free- and fixed-end constraints.
Skip Nav Destination
Article navigation
February 2005
Technical Papers
Effect of Microcomputed Tomography Voxel Size on the Finite Element Model Accuracy for Human Cancellous Bone
Gregory T. Christopherson,
Gregory T. Christopherson
Bone and Joint Center, Henry Ford Hospital, Detroit, MI
Search for other works by this author on:
X. Neil Dong,
X. Neil Dong
Bone and Joint Center, Henry Ford Hospital, Detroit, MI
Search for other works by this author on:
Do-Gyoon Kim,
Do-Gyoon Kim
Bone and Joint Center, Henry Ford Hospital, Detroit, MI
Search for other works by this author on:
David P. Fyhrie
David P. Fyhrie
Bone and Joint Center, Henry Ford Hospital, Detroit, MI
Search for other works by this author on:
Yener N. Yeni
Gregory T. Christopherson
Bone and Joint Center, Henry Ford Hospital, Detroit, MI
X. Neil Dong
Bone and Joint Center, Henry Ford Hospital, Detroit, MI
Do-Gyoon Kim
Bone and Joint Center, Henry Ford Hospital, Detroit, MI
David P. Fyhrie
Bone and Joint Center, Henry Ford Hospital, Detroit, MI
Contributed by the Bioengineering Division for publication in the JOURNAL OF BIOMECHANICAL ENGINEERING. Manuscript received by the Bioengineering Division December 22, 2004; revised manuscript received August 18, 2004. Associate Editor: Jeffrey A. Weiss.
J Biomech Eng. Feb 2005, 127(1): 1-8 (8 pages)
Published Online: March 8, 2005
Article history
Revised:
August 18, 2004
Received:
December 22, 2004
Online:
March 8, 2005
Citation
Yeni, Y. N., Christopherson , G. T., Neil Dong , X., Kim , D., and Fyhrie, D. P. (March 8, 2005). "Effect of Microcomputed Tomography Voxel Size on the Finite Element Model Accuracy for Human Cancellous Bone ." ASME. J Biomech Eng. February 2005; 127(1): 1–8. https://doi.org/10.1115/1.1835346
Download citation file:
Get Email Alerts
Related Articles
Quantitative Computed Tomography-Based Finite Element Models of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions
J Biomech Eng (August,2003)
Experimental Validation of a Finite Element Model of the Proximal Femur Using Digital Image Correlation and a Composite Bone Model
J Biomech Eng (January,2011)
The Modified Super-Ellipsoid Yield Criterion for Human Trabecular Bone
J Biomech Eng (December,2004)
Related Proceedings Papers
Related Chapters
Application of Adaptive Grayscale Morphological Operators for Image Analysis
Intelligent Engineering Systems through Artificial Neural Networks Volume 18
Novel and Efficient Mathematical and Computational Methods for the Analysis and Architecting of Ultralight Cellular Materials and their Macrostructural Responses
Advances in Computers and Information in Engineering Research, Volume 2
Application of Non-Linear Elastic Wave Spectroscopy (NEWS) to In Vitro Damage Assessment in Cortical Bone
Biomedical Applications of Vibration and Acoustics in Imaging and Characterizations