The level of structural detail that can be acquired and incorporated in a finite element (FE) analysis might greatly influence the results of microcomputed tomography (μCT)-based FE simulations, especially when relatively large bones, such as whole vertebrae, are of concern. We evaluated the effect of scanning and reconstruction voxel size on the μCT-based FE analyses of human cancellous tissue samples for fixed- and free-end boundary conditions using different combinations of scan/reconstruction voxel size. We found that the bone volume fraction (BV/TV) did not differ considerably between images scanned at 21 and 50 μm and reconstructed at 21, 50, or 110 μm (−0.5% to 7.8% change from the 21/21 μm case). For the images scanned and reconstructed at 110 μm, however, there was a large increase in BV/TV compared to the 21/21 μm case (58.7%). Fixed-end boundary conditions resulted in 1.8% [coefficient of variation (COV)] to 14.6% (E) difference from the free-end case. Dependence of model output parameters on scanning and reconstruction voxel size was similar between free- and fixed-end simulations. Up to 26%, 30%, 17.8%, and 32.3% difference in modulus (E), and average (VMExp), standard deviation (VMSD) and coefficient of variation (COV) of von Mises stresses, respectively, was observed between the 21/21 μm case and other scan/reconstruction combinations within the same (free or fixed) simulation group. Observed differences were largely attributable to scanning resolution, although reconstruction resolution also contributed significantly at the largest voxel sizes. All 21/21 μm results (taken as the gold standard) could be predicted from the 21/50 radj2=0.91-0.99;p<0.001, 21/110 radj2=0.58-0.99;p<0.02 and 50/50 results radj2=0.61-0.97;p<0.02. While BV/TV, VMSD, and VMExp/σz from the 21/21 could be predicted by those from the 50/110 radj2=0.63-0.93;p<0.02 and 110/110 radj2=0.41-0.77;p<0.05 simulations as well, prediction of E, VMExp, and COV became marginally significant 0.04<p<0.13 at 50/110 and nonsignificant at 110/110 0.21<p<0.70. In conclusion, calculation of cancellous bone modulus, mean trabecular stress, and other parameters are subject to large errors at 110/110 μm voxel size. However, enough microstructural details for studying bone volume fraction, trabecular shear stress scatter, and trabecular shear stress amplification VMExp/σz can be resolved using a 21/110 μm, 50/110 μm, and 110/110 μm voxels for both free- and fixed-end constraints.

1.
Tosteson, A., 2000, In NIH Concensus Development Conference on Osteoporosis Prevention, Diagnosis, and Therapy, NIH, Bethesda, MD, pp. 65–66.
2.
Gallagher
,
J. C.
,
Melton
,
L. J.
,
Riggs
,
B. L.
, and
Bergstrath
,
E.
,
1980
, “
Epidemiology of Fractures of the Proximal Femur in Rochester, Minnesota
,”
Clin. Orthop.
,
150
, pp.
163
171
.
3.
Cummings
,
S. R.
,
Kelsey
,
J. L.
,
Nevitt
,
M. C.
, and
O’Dowd
,
K. J.
,
1985
, “
Epidemiology of Osteoporosis and Osteoporotic Fractures
,”
Epidemiol. Rev.
,
7
, pp.
178
208
.
4.
Melton
, III,
L. J.
,
Lane
,
A. W.
,
Cooper
,
C.
,
Eastell
,
R.
,
O’Fallon
,
W. M.
, and
Riggs
,
B. L.
,
1993
, “
Prevalence and Incidence of Vertebral Deformities
,”
Osteoporosis Int.
,
3
, pp.
113
119
.
5.
Ross
,
P. D.
,
1997
, “
Clinical Consequences of Vertebral Fractures
,”
Am. J. Med.
,
103
, pp.
30S–42S
30S–42S
; discussion 42S–43S.
6.
Nevitt
,
M. C.
,
Ross
,
P. D.
,
Palermo
,
L.
,
Musliner
,
T.
,
Genant
,
H. K.
, and
Thompson
,
D.
,
1999
, “
Association of Prevalent Vertebral Fractures, Bone Density, and Alendronate Treatment With Incident Vertebral Fractures: Effect of Number and Spinal Location of Fractures
,”
Bone (N.Y.)
,
25
, pp.
613
619
.
7.
Kanis
,
J. A.
,
Melton
, III,
L. J.
,
Christiansen
,
C.
,
Johnston
,
C. C.
, and
Khaltaev
,
N.
,
1994
, “
The Diagnosis of Osteoporosis
,”
J. Bone Miner. Res.
,
9
, pp.
1137
1141
.
8.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1997
, “
Load Sharing Between the Shell and Centrum in the Lumbar Vertebral Body
,”
Spine
,
22
, pp.
140
150
.
9.
Bryce
,
R.
,
Aspden
,
R. M.
, and
Wytch
,
R.
,
1995
, “
Stiffening Effects of Cortical Bone on Vertebral Cancellous Bone in situ
,”
Spine
,
20
, pp.
999
1003
.
10.
Andresen
,
R.
,
Werner
,
H. J.
, and
Schober
,
H. C.
,
1998
, “
Contribution of the Cortical Shell of Vertebrae to Mechanical Behavior of the Lumbar Vertebrae With Implications for Predicting Fracture Risk
,”
Br. J. Radiol.
,
71
, pp.
759
765
.
11.
Liebschner
,
M. A.
,
Kopperdahl
,
D. L.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
,
2003
, “
Finite Element Modeling of the Human Thoracolumbar Spine
,”
Spine
,
28
, pp.
559
565
.
12.
Mizrahi
,
J.
,
Silva
,
M. J.
,
Keaveny
,
T. M.
,
Edwards
,
W. T.
, and
Hayes
,
W. C.
,
1993
, “
Finite-Element Stress Analysis of the Normal and Osteoporotic Lumbar Vertebral Body
,”
Spine
,
18
, pp.
2088
2096
.
13.
Niebur
,
G. L.
,
Yuen
,
J. C.
,
Hsia
,
A. C.
, and
Keaveny
,
T. M.
,
1999
, “
Convergence Behavior of High-Resolution Finite Element Models of Trabecular Bone
,”
J. Biomech. Eng.
,
121
, pp.
629
635
.
14.
van Rietbergen
,
B.
,
Weinans
,
H.
,
Huiskes
,
R.
, and
Odgaard
,
A.
,
1995
, “
A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite-Element Models
,”
J. Biomech.
,
28
, pp.
69
81
.
15.
Ladd
,
A. J.
, and
Kinney
,
J. H.
,
1998
, “
Numerical Errors and Uncertainties in Finite-Element Modeling of Trabecular Bone
,”
J. Biomech.
,
31
, pp.
941
945
.
16.
Keyak
,
J. H.
, and
Skinner
,
H. B.
,
1992
, “
Three-Dimensional Finite Element Modeling of Bone: Effects of Element Size
,”
J. Biomech. Eng.
,
14
, pp.
483
489
.
17.
Crawford
,
R. P.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
,
2003
, “
Quantitative Computed Tomography-Based Finite Element Models of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions
,”
J. Biomech. Eng.
,
125
, pp.
434
438
.
18.
Yeni
,
Y. N.
,
Hou
,
F. J.
,
Vashishth
,
D.
, and
Fyhrie
,
D. P.
,
2001
, “
Trabecular Shear Stress in Human Vertebral Cancellous Bone: Intra- and Interindividual Variations
,”
J. Biomech.
,
34
, pp.
1341
1346
.
19.
Yeni
,
Y. N.
,
Hou
,
F. J.
,
Ciarelli
,
T.
,
Vashishth
,
D.
, and
Fyhrie
,
D. P.
,
2003
, “
Trabecular Shear Stresses Predict In Vivo Linear Microcrack Density but not Diffuse Damage in Human Vertebral Cancellous Bone
,”
Ann. Biomed. Eng.
,
31
, pp.
726
732
.
20.
Fyhrie
,
D. P.
,
Hoshaw
,
S. J.
,
Hamid
,
M. S.
, and
Hou
,
F. J.
,
2000
, “
Shear Stress Distribution in the Trabeculae of Human Vertebral Bone
,”
Ann. Biomed. Eng.
,
28
, pp.
1194
1199
.
21.
Laib
,
A.
, and
Ruegsegger
,
P.
,
1999
, “
Calibration of Trabecular Bone Structure Measurements of In Vivo Three-Dimensional Peripheral Quantitative Computed Tomography With 28-Micrometer-Resolution Microcomputed Tomography
,”
Bone (N.Y.)
,
24
, pp.
35
39
.
22.
Jacobs
,
C. R.
,
Davis
,
B. R.
,
Rieger
,
C. J.
,
Francis
,
J. J.
,
Saad
,
M.
, and
Fyhrie
,
D. P.
,
1999
, “
The Impact of Boundary Conditions and Mesh Size on the Accuracy of Cancellous Bone Tissue Modulus Determination Using Large-Scale Finite-Element Modeling
,”
J. Biomech.
,
32
, pp.
1159
1164
.
23.
Reimann
,
D. A.
,
Hames
,
S. M.
,
Flynn
,
M. J.
, and
Fyhrie
,
D. P.
,
1997
, “
A Cone Beam Computed Tomography System for True 3D Imaging of Specimens
,”
Appl. Radiat. Isot.
,
48
, pp.
1433
1436
.
24.
Zauel, R., Yeni, Y. N., Christopherson, G. T., Cody, D. D., and Fyhrie, D. P., 2004, in 50th Annual Meeting, Orthopaedic Research Society 1018, San Francisco, Ca.
25.
Hou
,
F. J.
,
Lang
,
S. M.
,
Hoshaw
,
S. J.
,
Reimann
,
D. A.
, and
Fyhrie
,
D. P.
,
1998
, “
Human Vertebral Body Apparent and Hard Tissue Stiffness
,”
J. Biomech.
,
31
, pp.
1009
1015
.
26.
Yeni
,
Y. N.
, and
Fyhrie
,
D. P.
,
2001
, “
Finite Element Calculated Uniaxial Apparent Stiffness is a Consistent Predictor of Uniaxial Apparent Strength in Human Vertebral Cancellous Bone Tested With Different Boundary Conditions
,”
J. Biomech.
,
34
, pp.
1649
1654
.
27.
Ladd
,
A. J.
,
Kinney
,
J. H.
,
Haupt
,
D. L.
, and
Goldstein
,
S. A.
,
1998
, “
Finite-Element Modeling of Trabecular Bone: Comparison With Mechanical Testing and Determination of Tissue Modulus
,”
J. Orthop. Res.
,
16
, pp.
622
628
.
28.
Bury, K., 1999, Statistical Distributions in Engineering, Cambridge University Press, Cambridge, UK.
29.
Peyrin
,
F.
,
Salome
,
M.
,
Cloetens
,
P.
,
Laval-Jeantet
,
A. M.
,
Ritman
,
E.
, and
Ruegsegger
,
P.
,
1998
, “
Micro-CT Examinations of Trabecular Bone Samples at Different Resolutions: 14, 7, and 2 Micron Level
,”
Technol. Health Care
,
6
, pp.
391
401
.
30.
Fyhrie
,
D. P.
, and
Schaffler
,
M. B.
,
1994
, “
Failure Mechanisms in Human Vertebral Cancellous Bone
,”
Bone (N.Y.)
,
15
, pp.
105
109
.
31.
Fyhrie
,
D. P.
, and
Vashishth
,
D.
,
2000
, “
Bone Stiffness Predicts Strength Similarly for Human Vertebral Cancellous Bone in Compression and for Cortical Bone in Tension
,”
Bone (N.Y.)
,
26
, pp.
169
173
.
32.
Kuhn
,
J. L.
,
Goldstein
,
S. A.
,
Feldkamp
,
L. A.
,
Goulet
,
R. W.
, and
Jesion
,
G.
,
1990
, “
Evaluation of a Microcomputed Tomography System to Study Trabecular Bone Structure
,”
J. Orthop. Res.
,
8
, pp.
833
842
.
33.
Ito
,
M.
,
Nakamura
,
T.
,
Matsumoto
,
T.
,
Tsurusaki
,
K.
, and
Hayashi
,
K.
,
1998
, “
Analysis of Trabecular Microarchitecture of Human Iliac Bone Using Microcomputed Tomography in Patients With Hip Arthrosis With or Without Vertebral Fracture
,”
Bone (N.Y.)
,
23
, pp.
163
169
.
34.
Hara
,
T.
,
Tanck
,
E.
,
Homminga
,
J.
, and
Huiskes
,
R.
,
2002
, “
The Influence of Microcomputed Tomography Threshold Variations on the Assessment of Structural and Mechanical Trabecular Bone Properties
,”
Bone (N.Y.)
,
31
,
107
109
.
35.
Ulrich
,
D.
,
van Rietbergen
,
B.
,
Weinans
,
H.
, and
Ruegsegger
,
P.
,
1998
, “
Finite Element Analysis of Trabecular Bone Structure: A Comparison of Image-Based Meshing Techniques
,”
J. Biomech.
,
31
, pp.
1187
1192
.
36.
Ding
,
M.
,
Odgaard
,
A.
, and
Hvid
,
I.
,
1999
, “
Accuracy of Cancellous Bone Volume Fraction Measured by Micro-CT Scanning
,”
J. Biomech.
,
32
,
323
326
.
37.
Homminga
,
J.
,
Huiskes
,
R.
,
Van Rietbergen
,
B.
,
Ruegsegger
,
P.
, and
Weinans
,
H.
,
2001
, “
Introduction and Evaluation of a Gray-Value Voxel Conversion Technique
,”
J. Biomech.
,
34
, pp.
513
517
.
38.
Yeni, Y. N., Vashishth, D., and Fyhrie, D. P., 2001, in Summer Bioengineering Conference, the American Society of Mechanical Engineers, ASME, N.Y., pp. 19–20.
39.
Pistoia
,
W.
,
van Rietbergen
,
B.
,
Lochmuller
,
E. M.
,
Lill
,
C. A.
,
Eckstein
,
F.
, and
Ruegsegger
,
P.
,
2002
, “
Estimation of Distal Radius Failure Load With Microfinite Element Analysis Models Based on Three-Dimensional Peripheral Quantitative Computed Tomography Images
,”
Bone (N.Y.)
,
30
,
842
848
.
40.
Yeh
,
O. C.
, and
Keaveny
,
T. M.
,
1999
, “
Biomechanical Effects of Intraspecimen Variations in Trabecular Architecture: A Three-Dimensional Finite Element Study
,”
Bone (N.Y.)
,
25
,
223
228
.
41.
Pistoia
,
W.
,
van Rietbergen
,
B.
,
Laib
,
A.
, and
Ruegsegger
,
P.
,
2001
, “
High-Resolution Three-Dimensional-pQCT Images can be an Adequate Basis for In Vivo MicroFE Analysis of Bone
,”
J. Biomech. Eng.
,
123
, pp.
176
183
.
You do not currently have access to this content.