Little is known about the structural properties of plantar soft-tissue areas other than the heel; nor is it known whether the structural properties vary depending on location. Furthermore, although the quasi-linear viscoelastic (QLV) theory has been used to model many soft-tissue types, it has not been employed to model the plantar soft tissue. The structural properties of the plantar soft tissue were quantified via stress relaxation experiments at seven regions (subcalcaneal, five submetatarsal, and subhallucal) across eight cadaveric feet. The cadaveric feet were 36.9±17.4 (mean±S.D.) years of age, all free from vascular diseases and orthopedics disorders. All tests were performed at a constant environmental temperature of 35°C. Stress relaxation experiments were performed; different loads were employed for different areas based on normative gait data. A modification of the relaxation spectrum employed within the QLV theory allowed for the inclusion of frequency-sensitive relaxation properties in addition to nonlinear elastic behavior. The tissue demonstrated frequency-dependent damping properties that made the QLV theory ill suited to model the relaxation. There was a significant difference between the elastic structural properties (A) of the subcalcaneal tissue and all other areas p=0.004, and a trend p=0.067 for the fifth submetatarsal to have less viscous damping c1 than the subhallucal, or first, second, or third submetatarsal areas. Thus, the data demonstrate that the structural properties of the foot can vary across regions, but careful consideration must be given to the applied loads and the manner in which the loads were applied.

1.
Sammarco, G. J., 1989, Biomechanics of the Foot, Lea & Febiger, Malvern, PA, pp. 163–181.
2.
Sarrafian, S. K., 1993, Anatomy of the Foot and Ankle: Descriptive, Topographic, Functional, Lippincott, Philadelphia, PA.
3.
Cavanagh, P. R., Valiant, G. A., et al. (1984). Biological Aspects of Modeling Shoe/Foot Interaction During Running, in Sports Shoes and Playing Surfaces: Biomechanical Properties, E. C. Fredericks, Champaign, Illinois, Human Kinetics Publishers, Inc: 24–46.
4.
Kinoshita
,
H.
,
Ogawa
,
T.
,
Kuzuhara
,
K.
, and
Ikuta
,
K.
,
1993
, “
In Vivo Examination of the Dynamic Properties of the Human Heel Pad.
,”
Int. J. Sports Med.
,
14
(
6
), pp.
312
319
.
5.
Kinoshita
,
H.
,
Francis
,
P. R.
,
Murase
,
T.
,
Kawai
,
S.
, and
Ogawa
,
T.
,
1996
, “
The Mechanical Properties of the Heel Pad in Elderly Adults
,”
European J. Appl. Physiol. Occup. Physiol.
,
73
(
5
), pp.
404
409
.
6.
Bennett
,
M. B.
, and
Ker
,
R. F.
,
1990
, “
The Mechanical Properties of the Human Subcalcaneal Fat Pad in Compression
,”
J. Anat.
,
171
, pp.
131
138
.
7.
Aerts
,
P.
,
Ker
,
R. F.
,
De Clercq
,
D.
,
Ilsley
,
D. W.
, and
Alexander
,
R. M.
,
1995
, “
The Mechanical Properties of the Human Heel Pad: A Paradox Resolved
,”
J. Biomech.
,
28
(
11
), pp.
1299
1308
.
8.
Gooding
,
G. A.
,
Stess
,
R. M.
,
Graf
,
P. M.
,
Moss
,
K. M.
,
Louie
,
K. S.
, and
Grunfeld
,
C.
,
1986
, “
Sonography of the Sole of the Foot. Evidence for Loss of Foot Pad Thickness in Diabetes and Its Relationship to Ulceration of the Foot
,”
Invest. Radiol.
,
21
(
1
), pp.
45
48
.
9.
Jahss
,
M. H.
,
Michelson
,
J. D.
,
Desai
,
P.
,
Kaye
,
R.
,
Kummer
,
F.
,
Buschman
,
W.
,
Watkins
,
F.
, and
Reich
,
S.
,
1992
, “
Investigations Into the Fat Pads of the Sole of the Foot: Anatomy and Histology
,”
Foot Ankle
,
13
(
5
), pp.
233
242
.
10.
Phinney
,
S. D.
,
Stern
,
J. S.
,
Burke
,
K. E.
,
Tang
,
A. B.
,
Miller
,
G.
, and
Holman
,
R. T.
,
1994
, “
Human Subcutaneous Adipose Tissue Shows Site-Specific Differences in Fatty Acid Composition
,”
Am. J. Clin. Nutr.
,
60
(
5
), pp.
725
729
.
11.
Buschmann
,
W. R.
,
Jahss
,
M. H.
,
Kummer
,
F.
,
Desai
,
P.
,
Gee
,
R. O.
, and
Ricci
,
J. L.
,
1995
, “
Histology and Histomorphometric Analysis of the Normal and Atrophic Heel Fat Pad
,”
Foot Ankle Int.
,
16
(
5
), pp.
254
258
.
12.
Hsu
,
T. C.
,
Wang
,
C. L.
,
Shau
,
Y. W.
,
Tang
,
F. T.
,
Li
,
K. L.
, and
Chen
,
C. Y.
,
2000
, “
Altered Heel-Pad Mechanical Properties in Patients With Type 2 Diabetes Mellitus
,”
Diabetic Med.
,
17
(
12
), pp.
854
859
.
13.
Miller-Young
,
J. E.
,
Duncan
,
N. A.
, and
Baroud
,
G.
,
2002
, “
Material Properties of the Human Calcaneal Fat Pad in Compression: Experiment and Theory
,”
J. Biomech.
,
35
(
12
), pp.
1523
1531
.
14.
Faure
,
C.
,
1981
, “
The Skeleton of the Anterior Foot
,”
Anat. Clin.
,
3
, pp.
49
65
.
15.
Ledoux
,
W. R.
, and
Hillstrom
,
H. J.
,
2002
, “
The Distributed Plantar Vertical Force of Neutrally Aligned and Pes Planus Feet
,”
Gait Posture
,
15
(
1
), pp.
1
9
.
16.
Fung, Y. C., 1993, Bioviscoelastic Solids, Springer, New York, pp. 242–320.
17.
Woo
,
S. L.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
,
1981
, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medial Collateral Ligament
,”
J. Biomech. Eng.
,
103
(
4
), pp.
293
298
.
18.
Myers
,
B. S.
,
McElhaney
,
J. H.
, and
Doherty
,
B. J.
,
1991
, “
The Viscoelastic Responses of the Human Cervical Spine in Torsion: Experimental Limitations of Quasi-Linear Theory, and a Method for Reducing These Effects
,”
J. Biomech.
,
24
(
9
), pp.
811
817
.
19.
Kwan
,
M. K.
,
Lin
,
T. H.
, and
Woo
,
S. L.
,
1993
, “
On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
,
26
(4–5), pp.
447
452
.
20.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1997
, “
The Viscoelastic Behavior of the Non-Degenerate Human Lumbar Nucleus Pulposus in Shear
,”
J. Biomech.
,
30
(
10
), pp.
1005
1013
.
21.
Funk
,
J. R.
,
Hall
,
G. W.
,
Crandall
,
J. R.
, and
Pilkey
,
W. D.
,
2000
, “
Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments
,”
J. Biomech. Eng.
,
122
(
1
), pp.
15
22
.
22.
Cavanagh
,
P. R.
,
1999
, “
Plantar Soft Tissue Thickness During Ground Contact in Walking
,”
J. Biomech.
,
32
(
6
), pp.
623
628
.
23.
Gefen
,
A.
,
Megido-Ravid
,
M.
, and
Itzchak
,
Y.
,
2001
, “
In Vivo Biomechanical Behavior of the Human Heel Pad During the Stance Phase of Gait
,”
J. Biomech.
,
34
(
12
), pp.
1661
1665
.
24.
Sauren
,
A. A.
,
van Hout
,
M. C.
,
van Steenhoven
,
A. A.
,
Veldpaus
,
F. E.
, and
Janssen
,
J. D.
,
1983
, “
The Mechanical Properties of Porcine Aortic Valve Tissues
,”
J. Biomech.
,
16
(
5
), pp.
327
337
.
25.
Best
,
T. M.
,
McElhaney
,
J.
,
Garrett
, Jr.,
W. E.
, and
Myers
,
B. S.
,
1994
, “
Characterization of the Passive Responses of Live Skeletal Muscle Using the Quasi-Linear Theory of Viscoelasticity
,”
J. Biomech.
,
27
(
4
), pp.
413
419
.
26.
Galbraith
,
J. A.
,
Thibault
,
L. E.
, and
Matteson
,
D. R.
,
1993
, “
Mechanical and Electrical Responses of the Squid Giant Axon to Simple Elongation
,”
J. Biomech. Eng.
,
115
(
1
), pp.
13
22
.
27.
Wang
,
C. L.
,
Hsu
,
T. C.
,
Shau
,
Y. W.
,
Shieh
,
J. Y.
, and
Hsu
,
K. H.
,
1999
, “
Ultrasonographic Measurement of the Mechanical Properties of the Sole Under the Metatarsal Heads
,”
J. Orthop. Res.
,
17
(
5
), pp.
709
713
.
28.
Zheng
,
Y. P.
,
Choi
,
Y. K.
,
Wong
,
K.
,
Chan
,
S.
, and
Mak
,
A. F.
,
2000
, “
Biomechanical Assessment of Plantar Foot Tissue in Diabetic Patients Using an Ultrasound Indentation System
,”
Ultrasound Med. Biol.
,
26
(
3
), pp.
451
456
.
29.
Abramowitz, M., and Stegun, A., 1964, A Handbook of Mathematical Functions, U.S. Government Printing Office, Washington, D.C.
You do not currently have access to this content.