Background: The biomechanical behavior of the human abdominal aorta has been studied with great interest primarily due to its propensity to develop such maladies as atherosclerotic occlusive disease, dissections, and aneurysms. The purpose of this study was to investigate the age-related biaxial biomechanical behavior of human infrarenal aortic tissue. Methods of Approach: A total of 18 samples (13 autopsy, 5 organ donor) were harvested from patients in each of three age groups: Group 1 (<30years old, n=5), Group 2 (between 30 and 60 years old, n=7), and Group 3 (>60years old, n=6). Each specimen was tested biaxially using a tension-controlled protocol which spanned a large portion of the strain plane. Response functions fit to experimental data were used as a tool to guide the appropriate choice of the strain energy function W. Results: Under an equibiaxial tension of 120 N/m, the average peak stretch values in the circumferential direction for Groups 1, 2, and 3 were mean±SD1.46±0.07,1.15±0.07, and 1.11±0.06, respectively, while the peak stretch values in the longitudinal direction were 1.41±0.03,1.19±0.11, and 1.10±0.04, respectively. There were no significant differences between the average longitudinal and circumferential peak stretch within each group p>0.1, but both of these values were significantly less p<0.001 for Groups 2 and 3 when compared to Group 1. Patients in Group 1 were modeled using a polynomial strain energy function W, while patients in Groups 2 and 3 were modeled using an exponential form of W, suggesting an age-dependent shift in the mechanical response of this tissue. Conclusion: The biaxial tensile testing results reported here are, to our knowledge, the first given for the human infrarenal aorta and reinforce the importance of determining the functional form of W from experimental data. Such information may be useful for the clinician or researcher in identifying key changes in the biomechanical response of abdominal aorta in the presence of an aneurysm.

1.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of its Applicability
,”
J. Biomech.
,
33
, pp.
475
482
.
2.
Vorp
,
D. A.
,
Raghavan
,
M. L.
,
Muluk
,
S. C.
,
Makaroun
,
M. S.
,
Steed
,
D. L.
,
Shapiro
,
R.
, and
Webster
,
M. W.
,
1996
, “
Wall Strength and Stiffness of Aneurysmal and Nonaneurysmal Abdominal Aorta
,”
Ann. N.Y. Acad. Sci.
,
800
, pp.
274
276
.
3.
Raghavan
,
M. L.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
1996
, “
Ex Vivo Biomechanical Behavior of Abdominal Aortic Aneurysm: Assessment Using a New Mathematical Model
,”
Ann. Biomed. Eng.
,
24
, pp.
573
582
.
4.
Okamoto
,
R. J.
,
Wagenseil
,
J. E.
,
DeLong
,
W. R.
,
Peterson
,
S. J.
,
Kouchoukos
,
N. T.
, and
Sundt
, III,
T. M.
,
2002
, “
Mechanical Properties of Dilated Human Ascending Aorta
,”
Ann. Biomed. Eng.
,
30
, pp.
624
635
.
5.
Mohan
,
D.
,
1982
, “
Failure Properties of Passive Human Aortic Tissue. I—Uniaxial Tension Tests
,”
J. Biomech.
,
15
, pp.
887
902
.
6.
Perejda
,
A. J.
,
Abraham
,
P. A.
,
Carnes
,
W. H.
,
Coulson
,
W. F.
, and
Uitto
,
J.
,
1985
, “
Marfan’s Syndrome: Structural, Biochemical, and Mechanical Studies of the Aortic Media
,”
J. Lab. Clin. Med.
,
106
, pp.
376
383
.
7.
Sherebrin
,
M. H.
,
Hegney
,
J. E.
, and
Roach
,
M. R.
,
1988
, “
Effects of Age on the Anisotropy of the Descending Human Thoracic Aorta Determined by Uniaxial Tensile Testing and Digestion by NaOH Under Load
,”
Can. J. Phys.
,
67
, pp.
871
878
.
8.
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Evaluation of Planar Biological Materials
,”
J. Electron. Imaging
,
61
, pp.
199
246
.
9.
Zhou
,
J.
, and
Fung
,
Y. C.
,
1997
, “
The Degree of Nonlinearity and Anisotropy of Blood Vessel Elasticity
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
, pp.
14255
14260
.
10.
Learoyd
,
B. M.
, and
Taylor
,
M. G.
,
1966
, “
Alterations with Age in the Viscoelastic Properties of Human Arterial Walls
,”
Circ. Res.
,
18
, pp.
278
292
.
11.
Jeremy
,
R. W.
,
Huang
,
H.
,
Hwa
,
J.
,
McCarron
,
H.
,
Hughes
,
C. F.
, and
Richards
,
J. G.
,
1994
, “
Relation Between Age, Arterial Distensibility, and Aortic Dilatation in the Marfan Syndrome
,”
Am. J. Cardiol.
,
74
, pp.
369
373
.
12.
Medynsky
,
A. O.
,
Holdsworth
,
D. W.
,
Sherebrin
,
M. H.
,
Rankin
,
R. N.
, and
Roach
,
M. R.
,
1998
, “
The Effect of Storage Time and Repeated Measurements on the Elastic Properties of Isolated Porcine Aortas Using High Resolution X-Ray CT
,”
Can. J. Physiol. Pharmacol.
,
76
, pp.
451
456
.
13.
Sacks
,
M. S.
,
1999
, “
A Method for Planar Biaxial Mechanical Testing That Includes In-Plane Shear
,”
ASME J. Biomech. Eng.
,
121
, pp.
551
555
.
14.
Sun
,
W.
,
Sacks
,
M. S.
,
Sellaro
,
T. L.
,
Slaughter
,
W. S.
, and
Scott
,
M. J.
,
2003
, “
Biaxial Mechanical Response of Bioprosthetic Heart Valve Biomaterials to High In-Plane Shear
,”
ASME J. Biomech. Eng.
,
125
, pp.
372
380
.
15.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1986
, “
On Residual Stresses in Arteries
,”
ASME J. Biomech. Eng.
,
108
, pp.
189
192
.
16.
Stergiopulos
,
N.
,
Vulliemoz
,
S.
,
Rachev
,
A.
,
Meister
,
J.-J.
, and
Greenwald
,
S. E.
,
2001
, “
Assessing the Homogeneity of the Elastic Properties and Composition of the Pig Aortic Media
,”
J. Vasc. Res.
,
38
, pp.
237
246
.
17.
Vito
,
R. P.
, and
Hickey
,
J.
,
1980
, “
The Mechanical Properties of Soft Tissues—II: The Elastic Response of Arterial Segments
,”
J. Biomech.
,
13
, pp.
951
957
.
18.
Fung
,
Y. C.
,
1967
, “
Elasticity of Soft Tissues in Simple Elongation
,”
Am. J. Physiol.
,
213
, pp.
1532
1544
.
19.
Patel
,
D. J.
, and
Fry
,
D. L.
,
1969
, “
The Elastic Symmetry of Arterial Segments in Dogs
,”
Circ. Res.
,
24
, pp.
1
8
.
20.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1984
, “
Compressibility and Constitutive Equation of Arterial Wall in Radial Compression Experiments
,”
J. Biomech.
,
17
, pp.
35
40
.
21.
Vorp
,
D. A.
,
Rajagopal
,
K. R.
,
Smolinski
,
P. J.
, and
Borovetz
,
H. S.
,
1995
, “
Identification of Elastic Properties of Homogeneous, Orthotropic Vascular Segments in Distension
,”
J. Biomech.
,
28
, pp.
501
512
.
22.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
,
1951
, “
Large Elastic Deformations of Isotropic Materials, VII, Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc. London, Ser. A
,
243
, pp.
251
288
.
23.
Yin
,
F. C. P.
,
Spurgeon
,
H. A.
, and
Kallman
,
C. H.
,
1983
, “
Age-Associated Alterations in Viscoelastic Properties of Canine Aortic Strips
,”
Circ. Res.
,
53
, pp.
464
472
.
24.
Sacks
,
M. S.
,
2003
, “
Incorporation of Experimentally-Derived Fiber Orientation into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
125
, pp.
280
287
.
You do not currently have access to this content.