There is no doubt that atherosclerosis is one of the most important health problems in the Western Societies. It is well accepted that atherosclerosis is associated with abnormal stress and strain conditions. A compelling observation is that the epicardial arteries develop atherosclerosis while the intramural arteries do not. Atherosclerotic changes involving the epicardial portion of the coronary artery stop where the artery penetrates the myocardium. The objective of the present study is to understand the fluid and solid mechanical differences between the two types of vessels. A finite element analysis was employed to investigate the effect of external tissue contraction on the characteristics of pulsatile blood flow and the vessel wall stress distribution. The sequential coupling of fluid-solid interaction (FSI) revealed that the changes of flow velocity and wall shear stress, in response to cyclical external loading, appear less important than the circumferential stress and strain reduction in the vessel wall under the proposed boundary conditions. These results have important implications since high stresses and strains can induce growth, remodeling, and atherosclerosis; and hence we speculate that a reduction of stress and strain may be atheroprotective. The importance of FSI in deformable vessels with pulsatile flow is discussed and the fluid and solid mechanics differences between epicardial and intramural vessels are highlighted.

1.
Fung, Y. C., 1997, Biomechanics: Circulation, Springer-Verlag, New York.
2.
Caro
,
C. G.
,
Fitzgerald
,
J. M.
, and
Schroter
,
R. C.
,
1971
, “
Atheroma and arterial wall shear–observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis
,”
Proc. R. Soc. London, Ser. B
,
177
(
1046
), pp.
109
159
.
3.
Robicsek
,
F.
, and
Thubrikar
,
M. J.
,
1994
, “
The freedom from atherosclerosis of intramyocardial coronary arteries: Reduction of mural stress—A key factor
,”
Eur. J. Cardiothorac Surg.
,
8
(
5
), pp.
228
235
.
4.
DeBakey
,
M. E.
,
Lawrie
,
G. M.
, and
Glaeser
,
D. H.
,
1985
, “
Patterns of atherosclerosis and their surgical significance
,”
Ann. Surg.
,
201
(
2
), pp.
115
131
.
5.
Kassab
,
G. S.
,
2000
, “
The coronary vasculature and its reconstruction
,”
Ann. Biomed. Eng.
,
28
(
8
), pp.
903
915
.
6.
Kenyon, D., 1979, Anatomical and physiological characteristics of arteries. S., Wolf and N. T., Werthessen, eds., Dynamics of Arterial Flow, Vol 115, Plenum Press, New York, p. 48.
7.
Meyer
,
W. W.
, and
Naujokat
,
B.
,
1964
, “
Uber die rhythmishe Lokalisation der atherosklerotischen Herde im cervikalen Abschnitt der vertebralen Arterie
,”
Beitr Pathol. Anat.
,
130
, pp.
24
39
.
8.
ANSYS Inc., 2003, ANSYS 7.1 Online Documentation (provided with the ANSYS software under University research license).
9.
Zhou
,
J.
, and
Fung
,
Y. C.
,
1997
, “
The degree of nonlinearity and anisotropy of blood vessel elasticity
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
(
26
), pp.
14255
14260
.
10.
Hamza
,
L. H.
,
Dang
,
Q.
,
Lu
,
X.
,
Mian
,
A.
,
Molloi
,
S.
, and
Kassab
,
G. S.
,
2003
, “
Effect of passive myocardium on the compliance of porcine coronary arteries
,”
Am. J. of Physiology-Heart and Circulatory Physiology
,
285
(
2
), pp.
H653–H660
H653–H660
.
11.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1986
, “
On residual-stresses in arteries
,”
J. Biomech. Eng.
,
108
(
2
), pp.
189
192
.
12.
Atluri
,
S. N.
,
1984
, “
Alternate stress and conjugate strain measures, and mixed variational formulations involving rigid rotations, for computational analyses of finitely deformed plates and shells. Part-I: Theory
,”
Comput. Struct.
,
18
(
1
), pp.
93
116
.
13.
Atluri
,
S. N.
, and
Reissner
,
E.
,
1989
, “
On the formulation of variational theorems involving volume constraints
,”
Comput Mech.
,
5
(
5
), pp.
337
344
.
14.
Rachev
,
A.
,
Stergiopulos
,
N.
, and
Meister
,
J. J.
,
1996
, “
Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure
,”
J. Biomech.
,
29
(
5
), pp.
635
642
.
15.
Loudon
,
C.
, and
Tordesillas
,
A.
,
1998
, “
The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow
,”
J. Theor. Biol.
,
191
(
1
), pp.
63
78
.
16.
Zamir, M., 2000, The Physics of Pulsatile Flow, Springer Verlag, New York.
17.
Hoffman
,
J. I. E.
, and
Spaan
,
J. A. E.
,
1990
, “
Pressure-flow relations in the coronary circulation
,”
Physiol. Rev.
,
70
, pp.
331
390
.
18.
Kassab
,
G. S.
, and
Fung
,
Y. C.
,
1995
, “
The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis
,”
Ann. Biomed. Eng.
,
23
, pp.
13
20
.
19.
Wellnhofer
,
E.
,
Bocksch
,
W.
,
Hiemann
,
N.
,
Dandel
,
M.
,
Klimek
,
W.
,
Hetzer
,
R.
, and
Fleck
,
E.
,
2002
, “
Shear stress and vascular remodeling: Study of cardiac allograft coronary artery disease as a model of diffuse atherosclerosis
,”
J. Heart Lung Transplant
,
21
(
4
), pp.
405
416
.
20.
Kavdia
,
M.
, and
Popel
,
A. S.
,
2003
, “
Wall shear stress differentially affects NO level in arterioles for volume expanders and Hb-based O-2 carriers
,”
Microvasc. Res.
,
66
(
1
), pp.
49
58
.
21.
Kassab
,
G. S.
,
Gregersen
,
H.
,
Nielsen
,
S. L.
,
Liu
,
X.
,
Tanko
,
L.
, and
Falk
,
E.
,
2002
, “
Remodeling of the coronary arteries in supra-valvular aortic stenosis
,”
J. Hypertens.
,
20
(
12
), pp.
2429
2437
.
22.
Thubrikar
,
M. J.
, and
Robicsek
,
F.
,
1995
, “
Pressure-induced arterial-wall stress and atherosclerosis
,”
Ann. Thorac. Surg.
,
59
(
6
), pp.
1594
1603
.
23.
Marques
,
P. F.
,
Oliveira
,
M. E. C.
,
Franca
,
A. S.
, and
Pinotti
,
M.
,
2003
, “
Modeling and simulation of pulsatile blood flow with a physiologic wave pattern
,”
Artif. Organs
,
27
(
5
), pp.
478
485
.
24.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
,
1998
, “
Finite element modeling of blood flow in arteries
,”
Comput. Methods Appl. Mech. Eng.
,
158
(1–2), pp.
155
196
.
25.
Cebral
,
J. R.
,
Yim
,
P. J.
,
Lohner
,
R.
,
Soto
,
O.
, and
Choyke
,
P. L.
,
2002
, “
Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging
,”
Acad. Radiol.
,
9
(
11
), pp.
1286
1299
.
26.
Rachev
,
A.
, and
Hayashi
,
K.
,
1999
, “
Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
459
468
.
27.
Zhao
,
S. Z.
,
Xu
,
X. Y.
,
Hughes
,
A. D.
,
Thom
,
S. A
,
Stanton
,
A. V.
,
Ariff
,
B.
, and
Long
,
Q.
,
2000
, “
Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation
,”
J. Biomech.
,
33
(
8
), pp.
975
984
.
28.
Lee
,
K. W.
, and
Xu
,
X. Y.
,
2002
, “
Modelling of flow and wall behavior in a mildly stenosed tube
,”
Med. Eng. Phys.
,
24
(
9
), pp.
575
586
.
29.
Penrose
,
J. M. T.
, and
Staples
,
C. J.
,
2002
, “
Implicit fluid-structure coupling for simulation of cardiovascular problems
,”
Int. J. Numer. Methods Fluids
,
40
(3–4), pp.
467
478
.
30.
De Hart
,
J.
,
Peters
,
G. W. M.
,
Schreurs
,
P. J. G.
, and
Baaijens
,
F. P. T.
,
2003
, “
A three-dimensional computational analysis of fluid-structure interaction in the aortic valve
,”
J. Biomech. Eng.
,
36
(
1
), pp.
103
112
.
You do not currently have access to this content.