The performance of the heart after a mitral valve replacement operation greatly depends on the flow character downstream of the valve. The design and implanting orientation of valves may considerably affect the flow development. A study of the hemodynamics of two orientations, anatomical and anti-anatomical, of the St. Jude Medical (SJM) bileaflet valve are presented and compared with those of the SJM Biocor porcine valve, which served also to represent the natural valve. We document the velocity field in a flexible, transparent (LV) using time-resolved digital particle image velocimetry (TRDPIV). Vortex formation and vortex interaction are two important physical phenomena that dominate the filling and emptying of the ventricle. For the three configurations, the following effects were examined: mitral valve inlet jet asymmetry, survival of vortical structures upstream of the aortic valve, vortex-induced velocities and redirection of the flow in abidance of the Biot–Savart law, domain segmentation, resonant times of vortical structures, and regions of stagnant flow. The presence of three distinct flow patterns, for the three configurations, was identified by the location of vortical structures and level of coherence corresponding to a significant variation in the turbulence level distribution inside the LV. The adverse effect of these observations could potentially compromise the efficiency of the LV and result in flow patterns that deviate from those in the natural heart.

1.
Bronzino, Joseph D., 1999, The Biomedical Engineering Handbook, 2nd ed., CRC Press, Boca Raton, Vol. I, Chap. 29, pp. 1–15.
2.
Edmunds
,
Henry I.
,
2001
, “
Evolution of Prosthetic Heart Valves
,”
Am. Heart J.
,
141
, pp.
849
855
.
3.
Hammermeister
,
K.
,
Sethi
,
G. K.
,
Henderson
,
W. G.
,
Grover
,
F. L.
,
Oprian
,
C.
, and
Rahimtoola
,
S. H.
,
2000
, “
Outcome 15 Years After Valve Replacement With a Mechanical Versus a Bioprosthetic Valve: Final Report of the Veterans Affairs Randomized Trial
,”
J. Am. Coll. Cardiol.
,
36
(
4
), pp.
1152
1158
.
4.
Chandran
,
K. B.
,
Cabell
,
G. N.
,
Khalighi
,
B.
, and
Chen
,
C. J.
,
1983
, “
Laser Anemometry Measurements of Pulsatile Flow Past Aortic Valve Prostheses
,”
J. Biomech.
,
16
(
10
), pp.
865
873
.
5.
Chandran
,
K. B.
,
Khaloghi
,
B.
, and
Chen
,
C. J.
,
1985
, “
Experimental Study of Physiological Pulsatile Flow Past Valve Prostheses in a Model of Human Aorta. I. Caged Ball Valves
,”
J. Biomech.
,
18
(
10
), pp.
763
772
.
6.
Reul
,
H.
,
Giersiepen
,
M.
,
Schindehutte
,
H.
,
Effert
,
S.
, and
Rau
,
G.
,
1986
, “
Comparative in Vitro Evaluation of Porcine and Pericardial Bioprostheses
,”
Z. Kardiol.
,
75
(Suppl. 2), pp.
223
231
.
7.
Bruss
,
K. H.
,
Reul
,
H.
,
Van Gilse
,
J.
, and
Knott
,
E.
,
1983
, “
Pressure Drop and Velocity Fields at Four Mechanical Heart Valve Prostheses: Bjork-Shiley Standard, Bjork-Shiley Concave-Convex, Hall-Kaster and St-Jude Medical
,”
Life Support Syst.
,
1
, pp.
3
22
.
8.
Giersiepen
,
M.
,
Reul
,
H.
,
Knoch
,
M.
, and
Rau
,
G.
,
1986
, “
Pressure Drop and Velocity Fields at Mechanical Heart Valves
,”
Life Support Syst.
,
4
(Suppl. 2), pp.
166
168
.
9.
Yoganathan
,
A. P.
,
Woo
,
Y.
, and
Sung
,
H.
,
1986
, “
Turbulent Shear Stress Measurements in the Vicinity of Aortic Heart Valve Prostheses
,”
J. Biomech.
,
19
(
6
), pp.
433
442
.
10.
Hasenkam
,
J. M.
,
Westphal
,
D.
,
Wygaard
,
H.
,
Reul
,
H.
,
Giersiepen
,
M.
, and
Stodkilde-Jorgensen
,
H.
,
1988
, “
In Vitro Stress Measurements in the Vicinity of Six Mechanical Aortic Valves Using Hot-Film Anemometry in Steady Flow
,”
J. Biomech.
,
21
, pp.
235
247
.
11.
Hanle
,
D. D.
,
Harrison
,
E. C.
,
Yoganathan
,
A. P.
,
Alens
,
D. T.
, and
Corocran
,
W. H.
,
1989
, “
In Vitro Flow Dynamics of Four Prosthetic Aortic Valves: A Comparative Analysis
,”
J. Biomech.
,
22
, pp.
597
607
.
12.
Giersiepen
,
M.
,
Krause
,
U.
,
Knott
,
E.
,
Reul
,
H.
, and
Rau
,
G.
,
1989
, “
Velocity and Shear Stress Distribution Downstream of Mechanical Heart Valves in Pulsatile Flow
,”
Int. J. Artif. Organs
,
12
(
4
), pp.
261
269
.
13.
Tonietto, G, 1990, “Etude experimentale et numerique des ecoulements post-valvulaires.” These de Doctorat, Universite. Aix-Marseille II, Institut de Mecanique des Fluides de Marseille.
14.
Lim
,
W. L.
,
Chew
,
Y. T.
,
Chew
,
T. C.
, and
Low
,
H. T.
,
1994
, “
Particle Image Velocimetry in the Investigation of Flow Past Artificial Heart Valves
,”
Ann. Biomed. Eng.
,
22
, pp.
307
318
.
15.
Bellhouse
,
B. J.
, and
Bellhouse
,
F. H.
,
1969
, “
Fluid Mechanics of the Mitral Valve
,”
Nature (London)
,
224
, pp.
615
616
.
16.
Bellhouse
,
B. J.
,
1972
, “
Fluid Mechanics of a Model Mitral Valve and Left Ventricle
,”
Cardiovasc. Res.
,
6
, pp.
199
210
.
17.
Woo
,
Y.
, and
Yoganathan
,
A. P.
,
1986
, “
In Vitro Pulsatile Flow Velocity and Shear Stress Measurements in the Vicinity of Mechanical Mitral Heart Valve Prostheses
,”
J. Biomech.
,
19
(
6
), pp.
39
51
.
18.
Chandran
,
K. B.
,
Schoephoerster
,
R.
, and
Dellesperger
,
K. C.
,
1989
, “
Effect of Prosthetic Mitral Valve Geometry and Orientation on Flow Dynamics in a Model of Human Left Ventricle
,”
J. Biomech.
,
22
(
1
), pp.
51
65
.
19.
Schoephoerster
,
R. T.
,
Oynes
,
F.
,
Numez
,
H.
,
Kapadvanjwala
,
M.
, and
Dewanjee
,
M. K.
,
1993
, “
Effects of Local Geometry and Fluid Dynamics on Regional Platelet Deposition on Artificial Surfaces
,”
Arterioscler. Thromb.
,
12
, pp.
1806
1813
.
20.
Schoephoerster
,
R. T.
, and
Chandran
,
K. B.
,
1991
, “
Velocity and Turbulence Measurements Past Mitral Valve Prostheses in a Model Left Ventricle
,”
J. Biomech.
,
24
(
7
), pp.
549
562
.
21.
Lemmon
,
D.
, and
Yoganathan
,
A. P.
,
2000
, “
Three-Dimensional Computational Model of Left Heart Diastolic Function With Fluid-Structure Interaction
,”
ASME J. Biomech. Eng.
,
122
, pp.
109
117
.
22.
Garitey
,
V.
,
Gandelheid
,
T.
,
Fusezi
,
J.
,
Pelissier
,
R.
, and
Rieu
,
R.
,
1995
, “
Ventricular Flow Dynamic Past Bileaflet Prosthetic Heart Valves
,”
Int. J. Artif. Organs
,
18
(
7
), pp.
380
391
.
23.
Bluestein
,
D.
,
Rambod
,
E.
, and
Gharib
,
M.
,
2000
, “
Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves
,”
J. Biomech. Eng.
,
122
, pp.
125
134
.
24.
Kleine
,
P.
,
Perthel
,
M.
,
Hasenkam
,
J. M.
,
Nygaard
,
H.
,
Hansen
,
S. B.
, and
Laas
,
J.
,
1999
, “
High-Intensity Transient Signals (HITS) as a Parameter for Optimum Orientation of Mechanical Aortic Valves
,”
Thorac. Cardiovasc. Surg.
,
48
, pp.
360
363
.
25.
Laas
,
J.
,
Kleine
,
P.
,
Hasenkam
,
M. J.
, and
Nygaard
,
H.
,
1999
, “
Orientation of Tilting Disc and Bileaflet Aortic Valve Substitutes for Optimal Hemodynamics
,”
Ann. Thorac. Surg.
,
68
, pp.
1096
1099
.
26.
Fontaine
,
A. A.
,
Shengqiu
,
H.
,
Stadter
,
R.
,
Ellis
,
J. T.
,
Levine
,
R. A.
, and
Yoganathan
,
A. P.
,
1996
, “
In Vitro Assessment of Prosthetic Valve Function in Mitral Valve Replacement With Chordal Preservation Techniques
,”
J. Heart Valve Dis.
,
5
(
2
), pp.
186
198
.
27.
Panton, R. L., 1996, Incompressible Flow, 2nd ed., Wiley-Interscience, London, Chichester, Brisbane, p. 462.
28.
Reul
,
H.
,
Talukder
,
N.
, and
Mu¨ller
,
E. W.
,
1981
, “
Fluid Mechanics of the Natural Mitral Valve
,”
J. Biomech.
,
14
(
5
), pp.
361
372
.
29.
Gross
,
J. M.
,
Shermer
,
C. D.
, and
Hwang
,
H. C.
,
1988
, “
Vortex Shedding in Bileaflet Heart Valve Prosthesis
,”
Trans. Am. Soc. Artif. Intern. Organs
,
34
, pp.
845
850
.
30.
Liu
,
J. S.
,
Lu
,
P. C.
, and
Chu
,
S. H.
,
1996
, “
Pulsatile Flow Past Bileaflet Aortic Valve Prostheses
,”
J. Chin. Inst. Eng.
,
19
, pp.
333
344
.
31.
Mouret
,
F.
,
Garitey
,
V.
,
Gandelheid
,
T.
,
Fuseri
,
R.
, and
Rieu
,
R.
,
2000
, “
A New Dual Activation Simulator of the Left Heart Which Reproduces Physiological and Pathological Conditions
,”
Med. Biol. Eng. Comput.
,
38
, pp.
558
561
.
32.
Bronzino, J. D., 1999, The Biomedical Engineering Handbook, 2nd ed., CRC Press, Boca Raton, Vol. I, Chap. 1.
33.
Reul
,
H.
,
van Son Jacques
,
A. M.
,
Steinseifer
,
U.
,
Schmitz
,
B.
,
Schmidt
,
A.
,
Schmitz
,
C.
, and
Rau
,
G.
,
1993
, “
In Vitro Comparison of Bileaflet Aortic Heart Valve Prostheses-St. Jude Medical, Carbomedics, Modified Edwards-Duromedics and Sorin-Bicarbon Valves
,”
J. Thorac. Cardiovasc. Surg.
,
106
, pp.
412
420
.
34.
Willert
,
C. E.
, and
Gharib
,
M.
,
1991
, “
Digital Particle Image Velocimetry
,”
Exp. Fluids
,
10
, pp.
181
193
.
35.
Westerweel, J., 1993, Digital Particle Image Velocimetry, Theory and Application. Delft University Press, Delft.
36.
Huang, H. T., and Gharib, M., 1993, “Processing Error in Digital Particle Image Velocimetry,” FEDSM97-3068.
37.
Vlachos, P. P., and Telionis, D. P., “Turbulence Characteristics In The Wake Of A Circular Cylinder Near The Free Surface,” FEDSM2000-11320, Boston, MA, 2000.
38.
Abiven, C., and Vlachos, P. P., 2002, “Comparative Study of Established DPIV Algorithms for Planar Velocity Measurements,” ASME IMECE-33170, New Orleans, LA.
39.
Abiven, C., and Vlachos, P. P., 2002, “Super Spatio-Temporal Resolution, Digital, PIV System for Multi-Phase Flows With Phase Differentiation and Simultaneous Shape and Size Quantification,” ASME IMECE-33115, New Orleans, LA.
40.
Lele, S. K., April 1990, “Compact Finite Difference Schemes With Spectral-Like Resolution,” CTR Manuscript 107, NASA Technical Reports.
41.
Laas, J., Perthel, M., Aiken, A., and Kivelitz, D., 2000, “Intraventricular Flow in the Normal Heart and After Mitral Valve Replacement,” (Video) Kurt Singel Mann, Videostudio MHH.
42.
Yuji
,
O.
,
Okamoto
,
K.
,
Sonderegger
,
M.
,
Dohi
,
T.
,
Matsumoto
,
H.
, and
Horiuchi
,
T.
,
1997
, “
Nonsymmetric Leaflet Motion of St. Jude Medical Mitral Valves Simulated With a Computer-Controlled Hydraulic Mock Circulator
,”
Artif. Organs
,
21
(
4
), pp.
335
339
.
43.
Kilner
,
P. J.
,
Yang
,
G.-Z.
,
Wilkes
,
A. J.
,
Mohladin
,
R. H.
,
Firmin
,
D. N.
, and
Yacoub
,
M. H.
,
2000
, “
Asymmetric Redirection of Flow Through the Heart
,”
Nature (London)
,
404
, pp.
759
761
.
44.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
,
1998
, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid Mech.
,
360
, pp.
121
140
.
45.
Tennekes, H., February 1972, A First Course in Turbulence, MIT Press, Cambridge, MA.
46.
Batchelor, G. K., 1982, Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge.
47.
Kolmogorov, A. N., 1947, “Statistical Theory of Oscillations With Continuous Spectrum,” Anniversary Collection of Papers, Acad. Sci. U.S.S.R. Press, Moscow.
You do not currently have access to this content.