The ability to create extracellular matrix (ECM) constructs that are mechanically and biochemically similar to those found in vivo and to understand how their properties affect cellular responses will drive the next generation of tissue engineering strategies. To date, many mechanisms by which cells biochemically communicate with the ECM are known. However, the mechanisms by which mechanical information is transmitted between cells and their ECM remain to be elucidated. “Self-assembled” collagen matrices provide an in vitro-model system to study the mechanical behavior of ECM. To begin to understand how the ECM and the cells interact mechanically, the three-dimensional (3D) mechanical properties of the ECM must be quantified at the micro-(local) level in addition to information measured at the macro-(global) level. Here we describe an incremental digital volume correlation (IDVC) algorithm to quantify large (>0.05) 3D mechanical strains in the microstructure of 3D collagen matrices in response to applied mechanical loads. Strain measurements from the IDVC algorithm rely on 3D confocal images acquired from collagen matrices under applied mechanical loads. The accuracy and the precision of the IDVC algorithm was verified by comparing both image volumes collected in succession when no deformation was applied to the ECM (zero strain) and image volumes to which simulated deformations were applied in both 1D and 3D (simulated strains). Results indicate that the IDVC algorithm can accurately and precisely determine the 3D strain state inside largely deformed collagen ECMs. Finally, the usefulness of the algorithm was demonstrated by measuring the microlevel 3D strain response of a collagen ECM loaded in tension.

1.
Brown
,
T. D.
,
2000
, “
Techniques for Mechanical Stimulation of Cells In Vitro: A Review
,”
J. Biomech.
,
33
, pp.
3
14
.
2.
Tomasek
,
J. J.
,
Gabbiani
,
G.
,
Hinz
,
B.
,
Chaponnier
,
C.
, and
Brown
,
R. A.
,
2002
, “
Myofibroblasts and Mechanoregulation of Connective Tissue Remodeling
,”
Nat. Rev. Mol. Cell Biol.
,
3
, pp.
349
363
.
3.
Roy
,
P.
,
Rajfur
,
Z.
,
Pomorski
,
P.
, and
Jacobson
,
K.
,
2002
, “
Microscope-Based Techniques to Study Cell Adhesion and Migration
,”
Nat. Cell Biol.
,
4
, pp.
E91–E96
E91–E96
.
4.
Harris
,
A. K.
,
Wild
,
P.
, and
Stopak
,
D.
,
1980
, “
Silicone Rubber Substrata: A New Wrinkle in the Study of Cell Locomotion
,”
Science
,
208
, pp.
177
179
.
5.
Pelham
,
R. J.
, and
Wang
,
Y.-L.
,
1997
, “
Cell Locomotion and Focal Adhesions are Regulated by Substrate Flexibility
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
, pp.
13661
13665
.
6.
Roy
,
P.
,
Petroll
,
W. M.
,
Cavanagh
,
H. D.
,
Chuong
,
C. J.
, and
Jester
,
J. V.
,
1997
, “
An In Vitro Force Measurement Assay to Study the Early Mechanical Interaction Between Corneal Fibroblasts and Collagen Matrix
,”
Exp. Cell Res.
,
232
, pp.
106
117
.
7.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York.
8.
Eastwood
,
M.
,
Mudera
,
V. C.
,
McGrouther
,
D. A.
, and
Brown
,
R. A.
,
1998
, “
Effect of Precise Mechanical Loading on Fibroblasts Populated Collagen Lattices: Morphological Changes
,”
Cell Motil. Cytoskeleton
,
40
, pp.
13
21
.
9.
Butt
,
R. O.
,
Laurent
,
G. J.
, and
Bishop
,
J. E.
,
1995
, “
Mechanical Load and Polypeptide Growth Factors Stimulate Cardiac Fibroblasts Activity
,”
Ann. N.Y. Acad. Sci.
,
752
, pp.
387
393
.
10.
Varedi
,
M.
,
Tredget
,
E. E.
,
Ghahary
,
A.
, and
Scott
,
P. G.
,
2000
, “
Stress-Relaxation and Contraction of a Collagen Matrix Induces Expression of TGF-Beta and Triggers Apoptosis in Dermal Fibroblasts
,”
Biochem. Cell Biol.
,
78
, pp.
427
436
.
11.
He
,
Y.
, and
Grinnell
,
F.
,
1994
, “
Stress Relaxation of Fibroblasts Activates a Cyclic AMP Signaling Pathway
,”
J. Cell Biol.
,
126
, pp.
457
464
.
12.
Carver
,
W.
,
Nagpal
,
M. L.
,
Nachtigal
,
M.
,
Borg
,
T. K.
, and
Terracio
,
L.
,
1991
, “
Collagen Expression in Mechanically Stimulated Cardiac Fibroblasts
,”
Circ. Res.
,
69
, pp.
116
122
.
13.
Lambert
,
C. A.
,
Soudant
,
E. P.
,
Nusgens
,
B. V.
, and
Lapiere
,
C. M.
,
1992
, “
Pretranslational Regulation of Extracellular Matrix Molecules and Collagenase Expression in Fibroblasts by Mechanical Forces
,”
Lab. Invest.
,
66
, pp.
444
451
.
14.
Chiquet-Ehrismann
,
R.
,
Tannheimer
,
M.
,
Koch
,
M.
,
Brunner
,
A.
,
Spring
,
J.
, and
Martin
,
D.
,
1994
, “
Tenascin C Expression by Fibroblasts is Elevated in Stressed Collagen Gels
,”
J. Cell Biol.
,
127
, pp.
2093
2101
.
15.
Prajapati
,
R. T.
,
Chavally-Mis
,
B.
,
Herbage
,
D.
,
Eastwood
,
M.
, and
Brown
,
R. A.
,
2000
, “
Mechanical Loading Regulates Protease Production by Fibroblasts in Three-Dimensional Collagen Substrates
,”
Wound Repair Regen
,
8
, pp.
226
237
.
16.
Kessler
,
D.
,
Dethlefsen
,
S. W.
,
Haases
,
I.
,
Plomann
,
M.
,
Hirche
,
F.
,
Krieg
,
T.
, and
Eckes
,
B.
,
2001
, “
Fibroblasts in Mechanically Stressed Collagen Lattices Assume a “Synthetic” Phenotype
,”
J. Biol. Chem.
,
276
, pp.
36575
36585
.
17.
Mow, V. C., Bachrach, N. M., Setton, L. A., and Guilak, F., 1994, “Stress, Strain, Pressure and Flow Fields in Articular Cartilage and Chondrocytes,” Cell Mechanics and Cellular Engineering, Mow, V. C., Guilak, F., Tran-Son-Tay, R., and Hochmuth, R. M. eds., Springer-Verlag, New York, pp. 345–379.
18.
Guilak
,
F.
,
1994
, “
Volume and Surface Area Measurement of Viable Chondrocytes in Situ Using Geometric Modeling of Serial Confocal Sections
,”
J. Microsc. (Paris)
,
173
, pp.
245
256
.
19.
Guilak
,
F.
,
Ratcliff
,
A.
, and
Mow
,
V. C.
,
1995
, “
Chondrocyte Deformation and Local Tissue Strain in Articular Cartilage: A Confocal Microscopy Study
,”
J. Orthop. Res.
,
13
, pp.
410
442
.
20.
Lee
,
D. A.
,
Knight
,
M. M.
,
Bolton
,
J. F.
,
Idowu
,
B. D.
,
Kayser
,
M. V.
, and
Bader
,
D. L.
,
2000
, “
Chondrocyte Deformation Within Compressed Agarose Constructs at the Cellular and Subcellular Levels
,”
J. Biomech.
,
33
, pp.
81
95
.
21.
Knight
,
M. M.
,
van de Breevaart Bravenboer
,
J.
,
Lee
,
D. A.
,
van Osch
,
G. J. V. M.
,
Weinans
,
H.
, and
Bader
,
D. L.
,
2002
, “
Cell and Nucleus Deformation in Compressed Chrondrocyte-Alginate Constructs: Temporal Changes and Calculation of Cell Modulus
,”
Biochim. Biophys. Acta
,
1570
, pp.
1
8
.
22.
Brightman
,
A. O.
,
Rajwa
,
B. P.
,
Sturgis
,
J. E.
,
McCallister
,
M. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
,
2000
, “
Time-Lapse Confocal Reflection Microscopy of Collagen Fibrillogenesis and Extracellular Matrix Assembly In Vitro
,”
Biopolymers
,
54
, pp.
222
234
.
23.
Voytik-Harbin
,
S. L.
,
Rajwa
,
B. P.
, and
Robinson
,
J. P.
,
2001
, “
3D Imaging of ECM and ECM-Cell Interactions
,”
Methods Cell Biol.
,
63
, pp.
583
596
.
24.
Roeder
,
B. A.
,
Kokini
,
K.
,
Sturgis
,
J. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
,
2002
, “
Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure
,”
J. Biomech. Eng.
,
124
, pp.
214
222
.
25.
Voytik-Harbin
,
S. L.
,
Roeder
,
B. A.
,
Sturgis
,
J. E.
,
Kokini
,
K.
, and
Robinson
,
J. P.
,
2003
, “
Simultaneous Mechanical Loading and Confocal Reflection Microscopy for 3D Microbiomechanical Analysis of Biomaterials and Tissue Constructs
,”
Microsc. Microanal.
,
9
(
1
), pp.
74
85
.
26.
Chu
,
T. C.
,
Ranson
,
W. F.
,
Sutton
,
M. A.
, and
Peters
,
W. H.
,
1985
, “
Applications of Digital-Image-Correlation Techniques to Experimental Mechanics
,”
Exp. Mech.
,
25
, pp.
232
244
.
27.
Kahn-Jetter
,
Z. L.
,
Jha
,
N. K.
, and
Bhatia
,
H.
,
1994
, “
Optimal Image Correlation in Experimental Mechanics
,”
Opt. Eng.
,
33
, pp.
1099
1105
.
28.
Lyons
,
J. S.
,
Liu
,
J.
, and
Sutton
,
M. A.
,
1996
, “
High-Temperature Deformation Measurements Using Digital-Image Correlation
,”
Exp. Mech.
,
36
, pp.
64
70
.
29.
McNeill
,
S. R.
,
Peters
,
W. H.
, and
Sutton
,
M. A.
,
1987
, “
Estimation of Stress Intensity Factor by Digital Image Correlation
,”
Eng. Fract. Mech.
,
28
, pp.
101
112
.
30.
Lee
,
J.
,
Leonard
,
M.
,
Oliver
,
T.
,
Ishihara
,
A.
, and
Jacobson
,
K.
,
1994
, “
Traction Forces Generated by Locomoting Keratocytes
,”
J. Cell Biol.
,
127
, pp.
1957
1964
.
31.
Dembo
,
M.
, and
Wang
,
Y. L.
,
1999
, “
Stresses at the Cell-to-Substrate Interface During Locomotion of Fibroblasts
,”
Biophys. J.
,
76
(
4
), pp.
2307
2316
.
32.
Pelham
,
R. J.
, and
Wang
,
Y.-L.
,
1999
, “
High Resolution Detection of Mechanical Forces Exerted by Locomoting Fibroblasts on the Substrate
,”
Mol. Biol. Cell
,
10
, pp.
935
945
.
33.
Tolic-Norrelykke
,
I. V.
,
Butler
,
J. P.
,
Chen
,
J.
, and
Wang
,
N.
,
2002
, “
Spatial and Temporal Traction Response in Human Airway Smooth Muscle Cells
,”
Am. J. Phys. Cell Physiol.
,
283
, pp.
C1254–C1266
C1254–C1266
.
34.
Wang
,
C. C.-B.
,
Deng
,
J.-M.
,
Athesian
,
G. A.
, and
Hung
,
C. T.
,
2002
, “
An Automated Approach for Direct Measurement of Two-Dimensional Strain Distributions Within Articular Cartilage Under Unconfined Compression
,”
J. Biomech. Eng.
,
124
, pp.
557
567
.
35.
Bay
,
B. K.
,
Smith
,
T. S.
,
Fyhrie
,
D. P.
, and
Saad
,
M.
,
1999
, “
Digital Volume Correlation: Three-Dimensional Strain Mapping Using X-Ray Tomography
,”
Exp. Mech.
,
39
, pp.
217
226
.
36.
Smith
,
T. S.
,
Bay
,
B. K.
, and
Rashid
,
M. M.
,
2002
, “
Digital Volume Correlation Including Rotational Degrees of Freedom During Minimization
,”
Exp. Mech.
,
42
(
3
), pp.
272
278
.
37.
Raffel, M., Willert, C., and Kompenhans, J., 1998, Particle Image Velocimetry: A Practical Guide, Springer-Verlag, Berlin.
38.
Hoffman, J. D., 1992, Numerical Methods for Engineers and Scientists, McGraw-Hill, New York.
39.
Pawley, J. B., 1995, Handbook of Biological Confocal Microscopy, 2nd ed., Plenum Press, New York.
40.
Barocas, V. H., and Tranquillo, R. T., 1994, “Biphasic Theory and In Vitro Assays of Cell-Fibril Interaction in Tissue-Equivalent Gels,” Cell Mechanics and Cellular Engineering, Mow, V. C., Guilak, F., Tran-Son-Tay, R., and Hockmuth, R. M., eds., Springer-Verlag, New York, pp. 185–209.
41.
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
,
1997
, “
A Finite Element Solution for the Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Effect of Contact Guidance on Isometric Cell Traction Measurement
,”
J. Biomech. Eng.
,
119
, pp.
137
145
.
42.
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
,
1997
, “
An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment and Cell Contact Guidance
,”
J. Biomech. Eng.
,
119
, pp.
261
268
.
43.
Agoram
,
B.
, and
Barocas
,
V. H.
,
2001
, “
Coupled Macroscopic and Microscopic Scale Modeling of Fibrillar Tissues and Tissue Equivalents
,”
J. Biomech. Eng.
,
123
, pp.
362
369
.
44.
Zhalak
,
G. I.
,
Wagenseil
,
J. E.
,
Wakatsuki
,
T.
, and
Elson
,
E. L.
,
2000
, “
A Cell-Based Constitutive Relation for Bio-Artificial Tissues
,”
Biophys. J.
,
79
, pp.
2369
2381
.
45.
Breuls
,
R. G. M.
,
Sengers
,
B. G.
,
Oomens
,
C. W. J.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
,
2002
, “
Predicting Local Cell Deformation in Engineered Tissue Constructs: A Multilevel Finite Element Approach
,”
J. Biomech. Eng.
,
124
, pp.
198
207
.
46.
Mow, V. C., Kwan, M. K., Lai, W. M., and Holmes, M. H., 1994, “A Finite Deformation Theory for Nonlinearly Permeable Soft Hydrated Biological Tissues,” Frontiers in Biomechanics, Schmid-Schoenbein, G. W., Woo, S. L.-Y., and Zweifach, B. W., eds., Springer-Verlag, New York, pp. 153–179.
47.
Wren
,
T. A. L.
, and
Carter
,
D. R.
,
1998
, “
A Microstructural Model for the Tensile Constitutive Failure Behavior of Soft Skeletal Connective Tissues
,”
J. Biomech. Eng.
,
120
, pp.
55
61
.
48.
Guilak
,
F.
, and
Mow
,
V. C.
,
2000
, “
The Mechanical Environment of the Chondrocytes: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
,
33
, pp.
1663
1673
.
49.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
1997
, “
A Method to Quantify the Fiber Kinematics of Planar Tissues Under Biaxial Stretch
,”
J. Biomech.
,
30
, pp.
753
756
.
You do not currently have access to this content.