During pulsed laser lithotripsy, the calculus is subject to a strong recoil momentum which moves the calculus away from laser delivery and prolongs the operation. This study was designed to quantify the recoil momentum during Ho:YAG laser lithotripsy. The correlation among crater shape, debris trajectory, laser-induced bubble and recoil momentum was investigated. Calculus phantoms made from plaster of Paris were ablated with free running Ho:YAG lasers. The dynamics of recoil action of a calculus phantom was monitored by a high-speed video camera and the laser ablation craters were examined with Optical Coherent Tomography (OCT). Higher radiant exposure resulted in larger ablation volume (mass) which increased the recoil momentum. Smaller fibers produced narrow craters with a steep contoured geometry and decreased recoil momentum compared to larger fibers. In the presence of water, recoil motion of the phantom deviated from that of phantom in air. Under certain conditions, we observed the phantom rocking towards the fiber after the laser pulse. The shape of the crater is one of the major contributing factors to the diminished recoil momentum of smaller fibers. The re-entrance flow of water induced by the bubble collapse is considered to be the cause of the rocking of the phantom.

1.
Dretler
,
S. P.
,
1988
, “
Laser lithotripsy: A review of 20 years of research and clinical applications
,”
Lasers Surg. Med.
,
8
, pp.
341
356
.
2.
Chan
,
K. F.
,
Pfefer
,
T. J.
,
Teichman
,
J. M. H.
, and
Welch
,
A. J.
,
2001
, “
A perspective on laser lithotripsy: The fragmentation process
,”
J. Endourol.
,
15
, pp.
257
273
.
3.
Watson
,
G.
,
Murray
,
S.
,
Dretler
,
S. P.
, and
Parrish
,
J. A.
,
1987
, “
The pulsed dye laser for fragmenting urinary calculi
,”
Journal of Urology
,
138
, pp.
195
198
.
4.
Denstedt
,
J. D.
,
Chun
,
S. S.
,
Miller
,
M. D.
, and
Eberwein
,
P. M.
,
1997
, “
Intracorporeal lithotripsy with the Alexandrite laser
,”
Lasers Surg. Med.
,
20
, pp.
433
436
.
5.
Chan
,
K. F.
,
Vassar
,
G. J.
,
Pfefer
,
T. J.
,
Teichman
,
J. M. H.
,
Glickman
,
R. D.
,
Weintraub
,
S. T.
, and
Welch
,
A. J.
,
1999
. “
Holmium:YAG Laser Lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of Urinary Calculi
,”
Lasers Surg. Med.
,
25
, No.
1
, pp.
22
37
.
6.
Hofmann
,
R.
,
Hartung
,
R.
,
Geissdorfer
,
K.
,
Ascherl
,
R.
,
Erhardt
,
W.
,
Schmidt-Kloiber
,
H.
, and
Reichel
,
E.
,
1988
, “
Laser induced shock wave lithotripsy-biologic effects of nanosecond pulses
,”
Journal of Urology
,
139
, pp.
1077
1079
.
7.
Rink
,
K.
,
Delacretaz
,
G.
, and
Salathe
,
R. P.
,
1995
, “
Fragmentation process of current laser lithotriptors
,”
Lasers Surg. Med.
,
16
, pp.
134
146
.
8.
Frenz
,
M.
,
Zweig
,
A. D.
,
Romano
,
V.
, and
Weber
,
H. P.
,
1990
, “
Dynamics in laser cutting of soft media
,”
Proceeding of SPIE
,
1202
, pp.
22
33
.
9.
Kuznetsov
,
L. I.
,
1993
, “
Recoil momentum at a solid surface during developed laser ablation
,”
Quantum Electron
,
23
, No.
12
, pp.
1035
1038
.
10.
White
,
M. D.
,
Moran
,
M. E.
,
Calvano
,
C. J.
,
Borhan-Manesh
,
A.
, and
Mehlhaff
,
B. A.
,
1998
, “
Evaluation of retropulsion caused by holmium:YAG laser with various power settings and fibers
,”
J. Endourol
,
12
, No.
2
, pp.
183
186
.
11.
Foth
,
H. J.
,
Meyer
,
D.
, and
Sto¨ckel
,
T.
,
2000
, “
Side effects of laser tissue interaction studied by laser Doppler vibrometry
,”
Proceeding of SPIE
,
4072
, pp.
392
400
.
12.
Kuznetsov
,
L. I.
,
1995
, “
Energy balance of interaction pulse laser radiation with a target
,”
Proceeding of SPIE
,
2376
, pp.
269
277
.
13.
Hibst
,
R.
,
1992
, “
Mechanical effects of Erbium:YAG laser bone ablation
,”
Lasers Surg. Med.
,
12
, pp.
125
130
.
14.
Auerhammer
,
J. M.
,
Walker
,
R.
,
van der Meer
,
A. F. G.
, and
Jean
,
B.
,
1999
, “
Dynamics behavior of photoablation products of corneal tissue in the mid-IR: a study with FELIX
,”
Applied Physics B
,
68
, pp.
111
119
.
15.
Anisimov
,
S. I.
,
1968
, “
Vaporization of metal absorbing laser radiation
,”
Soviet Physics JETP
,
27
, pp.
182
183
.
16.
Zweig
,
A. D.
,
1991
, “
A thermo-mechanical model for laser ablation
,”
J. Appl. Phys.
,
70
, pp.
1684
1691
.
17.
Cummings
,
J. P.
, and
Walsh
, Jr.,
J. T.
,
1993
, “
Tissue tearing caused by pulsed laser-induced ablation pressure
,”
Appl. Opt.
,
32
, pp.
494
502
.
18.
Krokhin, O. N., 1972, “Laser Handbook,” Amsterdam: North-Holland, Vol. 2, pp. 1371–1384.
19.
Venugopalan
,
V.
,
Nishioka
,
N. S.
, and
Mikic
,
B. B.
,
1996
, “
Thermodynamics response of soft biological tissues to pulsed infrared-laser irradiation
,”
Biophys. J.
,
70
, pp.
2981
2993
.
20.
Huang
,
D.
,
Swanson
,
E. A.
,
Lin
,
C. P.
,
Schuman
,
J. S.
,
Stinson
,
W. G.
,
Chang
,
W.
,
Hee
,
M. R.
,
Flotte
,
T.
,
Gregory
,
K.
,
Puliafito
,
C. A.
, and
Fujimoto
,
J. G.
,
1991
, “
Optical coherence tomography
,”
Science
,
254
, pp.
1178
1181
.
21.
Izatt
,
J. A.
,
Kulkarni
,
M. D.
,
Yazdanfar
,
S.
,
Barton
,
J. K.
, and
Welch
,
A. J.
,
1997
, “
In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography
,”
Opt. Lett.
,
22
, pp.
1439
1441
.
22.
Barton
,
J. K.
,
Welch
,
A. J.
, and
Izatt
,
J. A.
,
1998
, “
Investigating pulsed dye laser-blood vessel interaction with color Doppler optical coherence tomography
,”
Opt. Express
, (http://www.opticsexpress.org/),
3
, No.
6
, pp.
251
256
.
23.
Ostertag
,
M.
,
McKinley
,
J. T.
,
Reinisch
,
L.
,
Harris
,
D. M.
, and
Tolk
,
N. H.
,
1997
, “
Laser ablation as a function of the primary absorber in dentin
,”
Lasers Surg. Med.
,
21
, pp.
384
394
.
24.
Hecht, E., 1998, “Optics,” New York: Addison Wesley Longman Inc., 3rd, pp. 55-57.
25.
Vogel
,
A.
, and
Venugopalan
,
V.
,
2003
, “
Mechanisms of pulsed laser ablation of biological tissues
,”
Chemical Reviews
,
103
, pp.
577
644
.
26.
Phipps
, Jr.,
C. R.
,
Harrison
,
R. F.
,
Shimada
,
T.
,
York
,
G. W.
,
Turner
,
T. P.
,
Corlis
,
X. F.
,
Steele
,
H. S.
,
Haynes
,
L. C.
, and
King
,
T. R.
,
1990
, “
Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelength
,”
Laser Part. Beams
, ,
8
, pp.
281
297
.
27.
Plesset
,
M. S.
, and
Chapman
,
R. B.
,
1971
, “
Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary
,”
J. Fluid Mech.
,
47
, pp.
283
290
.
28.
Lauterborn
,
W.
, and
Bolle
,
H.
,
1975
, “
Experimental investigations of cavitation bubble collapse in the neighborhood of a solid boundary
,”
J. Fluid Mech.
,
72
, pp.
391
399
.
29.
Tomita
,
Y.
, and
Shima
,
A.
,
1990
, “
High-speed photographic observations of laser-induced cavitation bubbles in water
,”
Acustica
,
71
, pp.
161
171
.
30.
Brennen, C. E., 1995, “Cavitation and Bubble Dynamics,” New York: Oxford University Press, pp. 78–83.
31.
Niemz, M. H., 1996, “
Laser-Tissue Interactions,” Berlin: Springer, pp.145–147.
32.
Vogel
,
A.
,
Lauterborn
,
V.
, and
Timm
,
R.
,
1989
, “
Optical and acoustical investigation of the dynamics of laser-produced cavitation bubbles near a solid boundary
,”
J. Fluid Mech.
,
206
, pp.
299
228
.
You do not currently have access to this content.