In the present study, a 1-D dynamic permeation of a monovalent electrolyte solution through a negatively charged-hydrated cartilaginous tissue is analyzed using the mechano-electrochemical theory developed by Lai et al. (1991) as the constitutive model for the tissue. The spatial distributions of stress, strain, fluid pressure, ion concentrations, electrical potential, ion and fluid fluxes within and across the tissue have been calculated. The dependencies of these mechanical, electrical and physicochemical responses on the tissue fixed charge density, with specified modulus, permeability, diffusion coefficients, and frequency and magnitude of pressure differential are determined. The results demonstrate that these mechanical, electrical and physicochemical fields within the tissue are intrinsically and nonlinearly coupled, and they all vary with time and depth within the tissue.

1.
Grodzinsky
,
A. J.
,
1983
, “
Electromechanical and physicochemical properties of connective tissue
,”
Crit. Rev. Biomed. Eng.
,
9
, pp.
133
199
.
2.
Maroudas, A., 1979, “Physicochemical properties of articular cartilage,” in Freeman, M. A. R. (ed.) Adult Articular Cartilage 2nd ed. Pitman Medical, pp. 215–290.
3.
Mow
,
V. C.
,
Ratcliffe
,
A.
, and
Poole
,
A. R.
,
1992
, “
Cartilage and diarthrodial joints as paradiams for hierarchical materials and structures
,”
Biomaterials
,
13
, pp.
67
97
.
4.
Muir, H., 1980, “The chemistry of the ground substance of joint cartilage,” in Sokolff, L. (ed.) The Joints and Synovial Fluid Academic Press, pp. 27–94.
5.
Stockwell, R. A., 1979, Biology of Cartilage Cells Cambridge, UK: Cambridge University Press.
6.
Grodzinsky
,
A. J.
,
Levenston
,
M. E.
,
Jin
,
M.
, and
Frank
,
E. H.
,
2000
, “
Cartilage tissue remodeling in response to mechanical forces
,”
Annu Rev Biomed Eng
,
2
, pp.
691
713
.
7.
Mow
,
V. C.
,
Wang
,
C. C.
, and
Hung
,
C. T.
,
1999
, “
The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage
,”
Osteoarthritis Cartilage
,
7
, pp.
41
58
.
8.
Jones
,
I. L.
,
Klamfeldt
,
A.
, and
Sandstrom
,
T.
,
1982
, “
The effect of continuous mechanical pressure upon the turnover of articular cartilage proteoglycans
,”
Clin. Orthop.
,
165
, pp.
283
289
.
9.
Sah
,
R. L.
,
Kim
,
Y. J.
,
Doong
,
J. Y.
,
Grodzinsky
,
A. J.
,
Plaas
,
A. H.
, and
Sandy
,
J. D.
,
1989
, “
Biosynthetic response of cartilage explants to dynamic compression
,”
J. Orthop. Res.
,
7
, pp.
619
636
.
10.
Sah
,
R. L.
,
Grodzinsky
,
A. J.
,
Plaas
,
A. H.
, and
Sandy
,
J. D.
,
1990
, “
Effects of tissue compression on the hyaluronate-binding properties of newly synthesized proteoglycans in cartilage explants
,”
Biochem. J.
,
267
, pp.
803
808
.
11.
Schneiderman
,
R.
,
Keret
,
D.
, and
Maroudas
,
A.
,
1986
, “
Effects of mechanical and osmotic pressure on the rate of glycosaminoglycan synthesis in the human adult femoral head cartilage: an in vitro study
,”
J. Orthop. Res.
,
4
, pp.
393
408
.
12.
Guilak, F., Sah, R. L., and Setton, L. A., 1997, “Physical regulation of cartilage metabolism,” in Mow, V. C. and Hayes, W. C. (eds.) Basic Orthopaedic Biomechanics New York: Raven Press, pp. 179–207.
13.
Mizuno
,
S.
,
Alleman
,
F.
, and
Glowachi
,
J.
,
2001
, “
Effects of medium perfusion on matrix production by bovine chondrocytes in three-dimensional collagen sponges
,”
J. Biomed. Mater. Res.
,
56
, pp.
368
375
.
14.
Parkkinen
,
J. J.
,
Ikonen
,
J.
,
Lammi
,
M. J.
,
Laakkonen
,
J.
,
Tammi
,
M.
, and
Helminen
,
H. J.
,
1993
, “
Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants
,”
Arch. Biochem. Biophys.
,
300
, pp.
458
465
.
15.
Suh
,
J. K.
,
Baek
,
G. H.
,
Aroen
,
A.
,
Malin
,
C. M.
,
Niyibizi
,
C.
,
Evans
,
C. H.
, and
Westerhausen-Larson
,
A.
,
1999
, “
Intermittant sub-ambient interstitial hydrostatic pressure as a potential mechanical stimulator for chondrocyte metabolism
,”
Osteoarthritis Cartilage
,
7
, pp.
71
80
.
16.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
, and
Hunziker
,
E. B.
,
1995
, “
Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture
,”
J. Cell. Sci.
,
108
(
Pt 4
), pp.
1497
1508
.
17.
Buschmann
,
M. D.
,
Kim
,
Y. J.
,
Wong
,
M.
,
Frank
,
E.
,
Hunziker
,
E. B.
, and
Grodzinsky
,
A. J.
,
1999
, “
Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow
,”
Arch. Biochem. Biophys.
,
366
, pp.
1
7
.
18.
Guilak
,
F.
,
Meyer
,
B. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
The effects of matrix compression on proteoglycan metabolism in articular cartilage explants
,”
Osteoarthritis Cartilage
,
2
, pp.
91
101
.
19.
Kim
,
Y. J.
,
Sah
,
R. L.
,
Grodzinsky
,
A. J.
,
Plaas
,
A. H.
, and
Sandy
,
J. D.
,
1994
, “
Mechanical regulation of cartilage biosynthetic behavior: physical stimuli
,”
Arch. Biochem. Biophys.
,
311
, pp.
1
12
.
20.
Kim
,
Y. J.
,
Bonassar
,
L. J.
, and
Grodzinsky
,
A. J.
,
1995
, “
The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression
,”
J. Biomech.
,
28
, pp.
1055
1066
.
21.
Torzilli
,
P. A.
,
Grigiene
,
R.
,
Huang
,
C.
,
Friedman
,
S. M.
,
Doty
,
S. B.
,
Boskey
,
A. L.
, and
Lust
,
G.
,
1997
, “
Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system
,”
J. Biomech.
,
30
, pp.
1
9
.
22.
Valhmu
,
W. B.
,
Stazzone
,
E. J.
,
Bachrach
,
N. M.
,
Saed-Nejad
,
F.
,
Fisher
,
S. G.
,
Mow
,
V. C.
, and
Ratcliffe
,
A.
,
1998
, “
Load-controlled compression of articular cartilage induces a transient stimulation of aggrecan gene expression
,”
Arch. Biochem. Biophys.
,
353
, pp.
29
36
.
23.
Levenston
,
M. E.
,
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1999
, “
Electrokinetic and poroelastic coupling during finite deformations of charged porous media
,”
J. Appl. Mech.
,
66
, pp.
323
333
.
24.
Sun
,
D. N.
,
Guo
,
X. E.
,
Likhitpanichkul
,
M.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
2003
, “
The Influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression
,”
J. Biomech. Eng.
,
126
, pp.
6
16
.
25.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1993
, “
Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage
,”
J. Biomech.
,
26
, pp.
709
723
.
26.
Gu
,
W. Y.
,
Mao
,
X. G.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
,
Mow
,
V. C.
, and
Rawlins
,
B. A.
,
1999
, “
The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, direction, and water content
,”
Spine
,
24
, pp.
2449
2455
.
27.
Lai
,
W. M.
, and
Mow
,
V. C.
,
1980
, “
Drag-induced compression of articular cartilage during a permeation experiment
,”
Biorheology
,
17
, pp.
111
123
.
28.
Mansour
,
J. M.
, and
Mow
,
V. C.
,
1976
, “
The permeability of articular cartilage under compressive strain and at high pressures
,”
J. Bone Jt. Surg.
,
58
, pp.
509
516
.
29.
Maroudas
,
A.
,
1968
, “
Physicochemical properties of cartilage in the light of ion exchange theory
,”
Biophys. J.
,
8
, pp.
575
595
.
30.
Pazzano
,
D.
,
Mercier
,
K. A.
,
Moran
,
J. M.
,
Fong
,
S. S.
,
DiBiasio
,
D. D.
,
Rulfs
,
J. X.
,
Kohles
,
S. S.
, and
Bonassar
,
L. J.
,
2000
, “
Comparison of chondrogensis in static and perfused bioreactor culture
,”
Biotechnol. Prog.
,
16
, pp.
893
896
.
31.
Temenoff
,
J. S.
, and
Mikos
,
A. G.
,
2000
, “
Review: Tissue engineering for regeneration of articular cartilage
,”
Biomaterials
,
21
, pp.
431
440
.
32.
Lai
,
W. M.
,
Mow
,
V. C.
,
Sun
,
D. D.
, and
Ateshian
,
G. A.
,
2000
, “
On the electric potentials inside a charged soft hydrated biological tissue: streaming potential versus diffusion potential
,”
J. Biomech. Eng.
,
122
, pp.
336
346
.
33.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A triphasic theory for the swelling and deformation behaviors of articular cartilage
,”
J. Biomech. Eng.
,
113
, pp.
245
258
.
34.
Sun
,
D. N.
,
Gu
,
W. Y.
,
Guo
,
X. E.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1999
, “
A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues
,”
Int. J. Numer. Methods Eng.
,
45
, pp.
1375
1402
.
35.
Klein, T., Schumacher, B., Li, K., Voegtline, M., Masuda, K., Thonar, E., and Sah, R., 2003, “Tissue engineered articular cartilage with functional stratification: targeted delivery of chondrocytes expressing superficial zone protein,” Proceedings of 48th Annual Meeting of the Orthopaedic Research Society, Paper No. 0212.
36.
Sharma, B., Williams, C. G., Cho, H., Kim, T., Malik, A., Sun, D., and Elisseeff, J. H., 2003, “Engineering structurally organized musculoskeletal tissues using photopolymerizable hydrogels,” Proceedings of the 2003 Annual Fall Meeting of the Biomedical Engineering Society, Paper No. 2.6.3.
37.
Waldman
,
S. D.
,
Grynpas
,
M. D.
,
Pilliar
,
R. M.
, and
Kandel
,
R. A.
,
2003
, “
The use of specific chondrocyte populations to modulate the properties of tissue-engineered cartilage
,”
J. Orthop. Res.
,
21
, pp.
132
138
.
38.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2001
, “
The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage
,”
J. Biomech. Eng.
,
123
, pp.
410
417
.
39.
Sun, D. N., 2002, “Theoretical and experimental investigations of the mechano-electrochemical properties of articular cartilage, a charged-hydrated-soft, biological tissue,” Ph.D. Columbia University.
40.
Wang
,
C. C.
,
Hung
,
C. T.
, and
Mow
,
V. V.
,
2001
, “
An analysis of the effects of depth-dependent aggregate modulus on articular cartilage stress-relaxation behavior in compression
,”
J. Biomech.
,
34
, pp.
75
84
.
You do not currently have access to this content.