As one important step in the investigation of the mechanical factors that lead to rupture of abdominal aortic aneurysms, flow fields and flow-induced wall stress distributions have been investigated in model aneurysms under pulsatile flow conditions simulating the in vivo aorta at rest. Vortex pattern emergence and evolution were evaluated, and conditions for flow stability were delineated. Systolic flow was found to be forward-directed throughout the bulge in all the models, regardless of size. Vortices appeared in the bulge initially during deceleration from systole, then expanded during the retrograde flow phase. The complexity of the vortex field depended strongly on bulge diameter. In every model, the maximum shear stress occurred at peak systole at the distal bulge end, with the greatest shear stress developing in a model corresponding to a 4.3 cm AAA in vivo. Although the smallest models exhibited stable flow throughout the cycle, flow in the larger models became increasingly unstable as bulge size increased, with strong amplification of instability in the distal half of the bulge. These data suggest that larger aneurysms in vivo may be subject to more frequent and intense turbulence than smaller aneurysms. Concomitantly, increased turbulence may contribute significantly to wall stress magnitude and thereby to risk of rupture.

1.
Newman
,
A. B.
,
Arnold
,
A. M.
,
Burke
,
G. L.
,
O’Leary
,
D. H.
, and
Manolio
,
T. A.
,
2001
, “
Cardiovascular disease and mortality in older adults with small abdominal aortic aneurysms detected by ultrasonography
,”
Ann. Intern Med.
,
134
, pp.
182
190
.
2.
Quill
,
D. S.
,
Colgan
,
M. P.
, and
Sumner
,
D. S.
,
1989
, “
Ultrasonic screening for the detection of abdominal aortic aneurysms
,”
Surg. Clin. North Am.
,
69
, pp.
713
720
.
3.
Taylor
,
L. M.
, and
Porter
,
J. M.
,
1986
, “
Basic data related to clinical decision-making in abdominal aortic aneurysms
,”
Ann. Vasc. Surg.
,
1
, pp.
502
504
.
4.
Armour
,
R. H.
,
1977
, “
Survivors of ruptured abdominal aortic aneurysms: The iceberg’s tip
,”
Br. Med. J.
,
2
, pp.
1055
1057
.
5.
Johansson
,
G.
, and
Swedenborg
,
J.
,
1986
, “
Ruptured abdominal aortic aneurysms: A study of incidence and mortality
,”
Br. J. Surg.
,
73
, pp.
101
103
.
6.
McCombs
,
R. P.
, and
Roberts
,
B.
,
1979
, “
Acute renal failure after resection of abdominal aortic aneurysm
,”
Surg. Gynecol. Obstet.
,
148
, pp.
175
179
.
7.
Johnston
,
K. W.
,
1989
, “
Multicenter prospective study of nonrupturedabdominal aortic aneurysm; II: Variables predicting morbidity and mortality
,”
J. Vasc. Surg.
,
9
, pp.
437
447
.
8.
Hollier
,
L. H.
,
Taylor
,
L. M.
, and
Ochsner
,
J.
,
1992
, “
Recommended indications for operative treatment of abdominal aortic aneurysms
,”
J. Vasc. Surg.
,
6
, pp.
1046
1056
.
9.
Nevitt
,
M. P.
,
Ballard
,
D. J.
, and
Hallett
,
J. W.
,
1989
, “
Prognosis of abdominal aortic aneurysms: A population based study
,”
N. Engl. J. Med.
,
321
, pp.
1009
1014
.
10.
Szilagyi
,
D. E.
,
Smith
,
R. F.
,
DeRusso
,
F. J.
,
Elliot
,
J. P.
, and
Sherrin
,
F. W.
,
1966
, “
Contribution of abdominal aortic aneurysmectomy to prolongation of life
,”
Ann. Surg.
,
164
, pp.
678
699
.
11.
Darling
,
R. C.
,
1970
, “
Ruptured arteriosclerotic abdominal aortic aneurysms: A pathologic and clinical study
,”
Am. J. Surg.
,
119
, pp.
397
401
.
12.
Stringfellow
,
M. M.
,
Lawrence
,
P. F.
, and
Stringfellow
,
R. G.
,
1987
, “
The influence of aorta-aneurysm geometry upon stress in the aneurysm wall
,”
J. Surg. Res.
,
42
, pp.
425
433
.
13.
Elger
,
D. F.
,
Blackketter
,
D. M.
,
Budwig
,
R. S.
, and
Johansen
,
K. H.
,
1996
, “
The influence of shape on the stresses in model abdominal aortic aneurysms
,”
J. Biomech. Eng.
,
118
, pp.
326
332
.
14.
Vorp
,
D. A.
,
Raghavan
,
M. L.
, and
Webster
,
M. W.
,
1998
, “
Mechanical wall stress in abdominal aortic aneurysm: Influence of diameter and asymmetry
,”
J. Vasc. Surg.
,
27
, pp.
632
639
.
15.
Asbury
,
C. L.
,
Ruberti
,
J. W.
,
Bluth
,
E. I.
, and
Peattie
,
R. A.
,
1995
, “
Experimental investigation of steady flow in rigid models of abdominal aortic aneurysms
,”
Ann. Biomed. Eng.
,
23
, pp.
29
39
.
16.
Peattie
,
R. A.
,
Asbury
,
C. L.
,
Bluth
,
E. I.
, and
Ruberti
,
J. W.
,
1996
, “
Steady flow in models of abdominal aortic aneurysms. Part I: Investigation of the velocity patterns
,”
J. Ultrasound Med.
,
15
, pp.
679
688
.
17.
Peattie
,
R. A.
,
Asbury
,
C. L.
,
Bluth
,
E. I.
, and
Riehle
,
T. J.
,
1996
, “
Steady flow in models of abdominal aortic aneurysms. Part II: Wall stresses and their implication for in vivo thrombosis and rupture
,”
J. Ultrasound Med.
,
15
, pp.
689
696
.
18.
Egelhoff
,
C.
,
Budwig
,
R.
,
Elger
,
D.
,
Kraishi
,
T.
, and
Johansen
,
K.
,
1999
, “
Model studies of the flow in abdominal aortic aneurysms during resting and exercise conditions
,”
J. Biomech.
,
32
, pp.
1319
1329
.
19.
Budwig
,
R.
,
Elger
,
D.
,
Hooper
,
H.
, and
Slippy
,
J.
,
1993
, “
Steady flow in abdominal aortic aneurysm models
,”
J. Biomech. Eng.
,
116
, pp.
418
423
.
20.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
,
1996
, “
Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition
,”
J. Biomech. Eng.
,
118
, pp.
280
286
.
21.
Yu
,
S.
,
2000
, “
Steady and pulsatile flow studies in abdominal aortic aneurysm models using particle image velocimetry
,”
Int. J. Heat Fluid Flow
,
21
, pp.
74
83
.
22.
Bluth
,
E. I.
,
Murphey
,
S. M.
,
Hollier
,
L. H.
, and
Sullivan
,
M. A.
,
1990
, “
Color flow Doppler in the evaluation of aortic aneurysms
,”
Int. Angiol
,
9
, pp.
8
10
.
23.
Elger
,
D. F.
,
Slippy
,
J. B.
,
Budwig
,
R. S.
,
Kraishi
,
T. A.
, and
Johansen
,
K. H.
,
1995
, “
A numerical study of the hemodynamics in a model AAA
,”
Bio-med. Fluids Eng.
,
212
, pp.
15
22
.
24.
Taylor
,
T. W.
, and
Yamaguchi
,
T.
,
1993
, “
Three-dimensional simulation of blood flow in an abdominal aortic aneurysm-steady and unsteady flow cases
,”
J. Biomech. Eng.
,
116
, pp.
89
98
.
25.
Perktold
,
K.
,
1987
, “
On the paths of fluid particles in an axisymmetrical aneurysm
,”
J. Biomech.
,
20
, pp.
311
317
.
26.
Fukushima
,
T.
,
Matsuzawa
,
T.
, and
Homma
,
T.
,
1989
, “
Visualization and finite element analysis of pulsatile flow in models of the abdominal aortic aneurysm
,”
Biorheology
,
26
, pp.
109
130
.
27.
Finol
,
E. A.
, and
Amon
,
C. H.
,
2002
, “
Flow-induced wall shear stress in abdominal aortic aneurysms: Part I—steady flow hemodynamics
,”
Comp. Methods Biomech. Biomed. Eng.
,
5
(
4
), pp.
309
318
.
28.
Finol
,
E. A.
, and
Amon
,
C. H.
,
2002
, “
Flow-induced wall shear stress in abdominal aortic aneurysms: Part II—pulsatile flow hemodynamics
,”
Comp. Methods Biomech. Biomed. Eng.
,
5
(
4
), pp.
319
328
.
29.
DiMartino, E., Guadagni, G., Fumero, A., Spirito, R. and Redaelli, A., 2001, “A computational study of the fluid-structure interaction within a realistic aneurysmatic vessel model obtained from CT scans image processing,” Comp. Methods Biomech. Biomed. Engr., 3rd Edition, ed. Middleton, J., Jones, M., Shrive, N. and Pande, G., pp. 719–724.
30.
DiMartino
,
E.
,
Guadagni
,
G.
,
Fumero
,
A.
,
Ballerini
,
G.
,
Spirito
,
R.
,
Biglioli
,
P.
, and
Redaelli
,
A.
,
2001
, “
Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm
,”
Med. Eng. Phys.
,
23
, pp.
647
655
.
31.
Asbury, C. L., 1993, “Experimental study of steady flow in rigid models of abdominal aortic aneurysms,” M.S.E. Thesis, Tulane University.
32.
Parsons, M. L., 1997, “Experimental investigation of pulsatile flow in rigid models of abdominal aortic aneurysms,” M.S.E. Thesis, Tulane University.
33.
Maier
,
S. E.
,
Meier
,
D.
,
Boesiger
,
P.
,
Moser
,
U. T.
, and
Vieli
,
A.
,
1989
, “
Human abdominal aorta: Comparative measurements of blood flow with MR imaging and multigated doppler U.S.
,”
Radiol.
,
171
, pp.
487
492
.
34.
Fung, Y.-C., 1993, Biomechanics: Mechanical Properties of Living Tissues, 2nd Ed., Springer-Verlag, New York.
35.
Wille
,
S. O.
,
1981
, “
Pulsatile pressure and flow in an arterial aneurysmsimulated in a mathematical model
,”
J. Biomech. Eng.
,
3
, pp.
153
158
.
36.
Fry
,
D. L.
,
1968
, “
Acute vascular endothelial changes associated with increased blood velocity gradients
,”
Circ. Res.
,
22
, pp.
165
197
.
You do not currently have access to this content.