Background: Experimental data and a complementary biophysical model are presented to describe the dynamic response of a unicellular microalga to osmotic processes encountered during cryopreservation. Method of Approach: Chlorococcum texanum (C. texanum) were mounted on a cryoperfusion microscope stage and exposed sequentially to various solutions of sucrose and methanol. Transient volumetric excursions were determined by capturing images of cells in real time and utilizing image analysis software to calculate cell volumes. A biophysical model was applied to the data via inverse analysis in order to determine the plasma membrane permeability to water and to methanol. The data were also used to determine the elastic modulus of the cell wall and its effect on cell volume. A three-parameter (hydraulic conductivity Lp, solute permeability; (ω), and reflection coefficient, (σ)) membrane transport model was fit to data obtained during methanol perfusion to obtain constitutive property values. These results were compared with the property values obtained for a two coefficient (Lp and ω) model. Results: The three-parameter model gave a value for σ not consistent with practical physical interpretation. Thus, the two-coefficient model is the preferred approach for describing simultaneous water and methanol transport. The rate of both water and methanol transport were strongly dependent on temperature over the measured temperature range (25°C to −5°C) and cells were appreciably more permeable to methanol than to water at all measured temperatures. Conclusion: These results may explain in part why methanol is an effective cryoprotective agent for microalgae.

1.
Morris
,
G. J.
,
1978
, “
Cryopreservation of 250 Strains of Chlorococcales by the Method of Two-Step Cooling
,”
British Phycol. J.
,
13
, pp.
15
24
.
2.
Beaty
,
M. H.
, and
Parker
,
B. C.
,
1992
, “
Cryopreservation of Eukaryotic Algae
,”
Virginia J. Sci.
,
43
, pp.
403
410
.
3.
Bodas, K., Brenning, C., Diller, K. R. and Brand, J. J., 1995, “Cryopreservation of Blue-Green and Eukaryotic Algae in the Culture Collection at The University of Texas at Austin,” Cryo-Letters, 16, pp. 267–274.
4.
Crutchfield
,
A. M.
,
Diller
,
K. R.
, and
Brand
,
J. J.
,
1999
, “
Cryopreservation of Chlamydomonas reinhardtii (Chlorophyta)
,”
Euro. J. Phycology
,
34
, pp.
43
52
.
5.
Tanaka
,
J. Y.
,
Walsh
,
J. R.
,
Diller
,
K. R.
,
Brand
,
J. J.
, and
Aggarwal
,
S. J.
,
2001
, “
Algae Permeability to Me2SO from −3°C to 25°C
,”
Cryobiology
,
42
, pp.
286
300
.
6.
Morris
,
G. J.
,
Coulson
,
G.
, and
Clarke
,
A.
,
1979
, “
The Cryopreservation of Chlamydomonas
,”
Cryobiology
,
16
, pp.
401
410
.
7.
Hagedorn
,
M.
,
Hsu
,
E. W.
,
Pilatus
,
U.
,
Wildt
,
D. E.
,
Rall
,
W. R.
, and
Blackband
,
S. J.
,
1996
, “
Magnetic Resonance Microscopy and Spectroscopy Reveal Kinetics of Cryoprotectant Permeation in a Multicompartmental Biological System
,”
Proc. Natl. Acad. Sci. U.S.A.
,
83
(
15
), pp.
7454
7459
.
8.
Collander
,
R.
, and
Barlund
,
H.
,
1933
, “
Permeabilitatstudien an Chara ceratophylla
,”
Acta Botanica Fennica
,
11
, pp.
1
131
.
9.
Collander
,
R.
,
1949
, “
The Permeability of Plant Protoplasts to Small Molecules
,”
Physiologia Plantarum
,
2
, pp.
300
311
.
10.
Wartiovaara
,
V.
,
1949
, “
The Permeability of the Plasma Membranes of Nitella to Normal Primary Alcohols at Low and Intermediate Temperatures
,”
Physiologia Plantarum
,
2
, pp.
184
196
.
11.
Kedem
,
O.
, and
Katchalsky
,
A.
,
1958
, “
Thermodynamic Analysis of the Permeability of Biological Membranes to Non-Electrolytes
,”
Biochim. Biophys. Acta
,
27
, pp.
229
246
.
12.
Dainty
,
J.
, and
Ginzburg
,
B. Z.
,
1964a
, “
The Measurement of Hydraulic Conductivity (Osmotic Permeability to Water) of Internodal Characean Cells by Means of Transcellular Osmosis
,”
Biochim. Biophys. Acta
,
79
, pp.
102
111
.
13.
Hertel
,
A.
, and
Steudle
,
E.
,
1997
, “
The Function of Water Channels in Chara: The Temperature Dependence of Water and Solute Flows Provides Evidence for Composite Membrane Transport and for a Slippage of Small Organic Solutes Across Water Channels
,”
Planta
,
202
, pp.
324
335
.
14.
Steudle
,
E.
, and
Tyerman
,
S. D.
,
1983
, “
Determination of Permeability Coefficients, Reflection Coefficients, and Hydraulic Conductivity of Chara Carollina Using the Pressure Probe: Effects of Solute Concentrations
,”
J. Membr. Biol.
,
75
, pp.
85
96
.
15.
Henzler
,
T.
, and
Steudle
,
B.
,
1995
, “
Reversible Closing of Water Channels in Chara Internodes Provides Evidence for a Composite Transport Model of the Plasma Membrane
,”
J. Exp. Bot.
,
46
(
283
), pp.
199
209
.
16.
Steudle
,
E.
, and
Henzler
,
T.
,
1995
, “
Water Channels in Plants: Do Basic Concepts of Water Transport Change?
J. Exp. Bot.
,
46
, pp.
1067
1076
.
17.
Tazawa
,
M.
,
Asai
,
K.
, and
Iwasaki
,
N.
,
1996
, “
Characteristics of Hg- and Zn-Sensitive Water Channels in the Plasma Membrane of Chara Cells
,”
Bot. Acta
,
109
, pp.
388
396
.
18.
Zimmerman
,
U.
, and
Steudle
,
E.
,
1975
, “
The Hydraulic Conductivity and Volumetric Elastic Modulus of Cells and Isolated Cell Walls of Nitella and Chara Species: Pressure and Volume Effects
,”
Austrail. J. Plant Phys.
,
2
, pp.
1
13
.
19.
Wu
,
H. I.
,
Spence
,
R. D.
, and
Sharpe
,
P. J. H.
,
1988
, “
Plant Cell Wall Elasticity II: Polymer Elastic Properties of the Microfibrils
,”
J. Theor. Biol.
,
133
, pp.
239
253
.
20.
McGrath
,
J. J.
,
1997
, “
Quantitative Measurement of Cell Membrane Transport: Technology and Applications
,”
Cryobiology
,
34
(
4
), pp.
273
330
.
21.
Walcerz
,
D. B.
, and
Diller
,
K. R.
,
1991
, “
Quantitative Light Microscopy of Combined Perfusion and Freezing Processes
,”
J. Microsc.
,
161
, pp.
292
311
.
22.
Gao
,
D. Y.
,
Benson
,
C. T.
,
Liu
,
C.
,
McGrath
,
J. J.
,
Critser
,
E. S.
, and
Critser
,
J. K.
,
1996
, “
Development of a Novel Microperfusion Chamber for Determination of Cell Membrane Transport Properties
,”
Biophys. J.
,
71
, pp.
443
450
.
23.
Raven, J. A., 1976, “Transport in Algal Cells,” in Transport in Plants II, Part A, Cells., U. Luttge and M. G. Pitman, eds., Springer-Verlag, Berlin, pp. 129–188.
24.
Blackwell
,
J. R.
, and
Gilmour
,
D. J.
,
1991
, “
Determination of Intracellular Volume and Internal Solute Concentration of the Green Alga Chlorococcum submarinum
,”
Arch. Microbiol.
,
157
, pp.
80
85
.
25.
Kleinhans
,
F. W.
,
1998
, “
Membrane Permeability Modeling: Kedem-Katchalsky vs. a Two-Parameter Formalism
,”
Cryobiology
,
37
, pp.
271
289
.
26.
Dainty, J., 1976, “Water Relations of Plant Cells,” in Transport in Plants II, Part A, Cells, eds. Luttge, U. and Pitman, M. G., Springer-Verlag, Berlin, pp. 12–35.
27.
Papanek, T. H., 1978, “The Water Permeability of Human Erythrocytes in the Temperature Range 25°C to −10°C,” Ph.D. Thesis, M.I.T.
28.
Levin
,
R. L.
,
Cravalho
,
E. G.
, and
Huggins
,
C. E.
,
1976
, “
A Membrane Model Describing the Effect of Temperature on the Water Conductivity of Erythrocyte Membranes at Subzero Temperatures
,”
Cryobiology
,
13
, pp.
415
429
.
29.
McGrath, J. J., 1988, “Membrane Transport Properties,” in Low Temperature Biotechnology: Emerging Applications and Engineering Contributions, J. J. McGrath and K. R. Diller, eds., ASME, New York, BED-10, HTD-98, pp. 273–330.
30.
Starr
,
R. C.
, and
Zelkus
,
J. A.
,
1993
, “
UTEX—The Culture Collection of Algae at the University of Texas at Austin
,”
J. Phycol.
,
29
, (suppl.), 1–106.
31.
Gorman
,
D. S.
, and
Lovine
,
R. P.
,
1965
, “
Cytochrome F and Plastocyanin: Their Sequence in the Photosynthetic Electron Transport Chain of Chlamydomonas reinhardi
,”
Proc. Natl. Acad. Sci. U.S.A.
,
54
, pp.
1665
1669
.
32.
Chasan
,
B.
, and
Solomon
,
A. K.
,
1985
, “
Urea Reflection Coefficient for the Human Red Cell Membrane
,”
Biochim. Biophys. Acta
,
821
, pp.
56
62
.
33.
Harris, E. H., 1989, “Culture and Storage Methods,” in The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use, E. H. Harris, ed., Academic Press, San Diego, pp. 25–63.
34.
Baker
,
H.
,
1972
, “
The Intracellular Pressure of Nitelia in Hypertonic Solutions and Its Relationship to Freezing Injury
,”
Cryobiology
,
9
, pp.
283
288
.
35.
Melkonian
,
J. J.
,
Wolfe
,
J.
, and
Steponkus
,
P. L.
,
1982
, “
Determination of the Volumetric Modulus of Elasticity of Wheat Leaves by Pressure-Volume Relations and the Effect of Drought Conditioning
,”
Crop. Sci.
,
22
, pp.
116
123
.
36.
Steudle
,
E.
,
Zimmerman
,
U.
, and
Lurtge
,
U.
,
1977
, “
Effect of Turgor Pressure and Cell Size on the Wall Elasticity of Plant Ceils
,”
Plant Physiol.
,
59
, pp.
285
289
.
37.
Gardner
,
W. R.
, and
Ehlig
,
C. F.
,
1964
, “
Physical Aspects of the Internal Water Relations of Plant Leaves
,”
Plant Physiol.
,
65
, pp.
705
711
.
38.
Gutknecht
,
J.
,
1968
, “
Permeability of Valonia to Water and Solutes: Apparent Absence of Aqueous Membrane Pores
,”
Biochim. Biophys. Acta
,
163
, pp.
20
29
.
39.
Dainty
,
J.
, and
Ginzburg
,
B. Z.
,
1964b
, “
The Reflection Coefficient of Plant Cell Membranes for Certain Solutes
,”
Biochim. Biophys. Acta
,
79
, pp.
129
137
.
40.
Terwilliger
,
T. C.
, and
Solomon
,
A. K.
,
1981
, “
Osmotic Water Permeability of Human Red Cells
,”
J. Gen. Physiol.
,
77
, pp.
549
570
.
41.
de Freitas
,
R. C.
,
Diller
,
K. R.
,
Lakey
,
J. R. T.
, and
Rajotte
,
R. V.
,
1997
, “
Osmotic Behavior and Transport Properties of Human lslets in a Dimethyl Sulfoxide Solution
,”
Cryobiology
,
35
, pp.
230
239
.
42.
Aggarwal
,
S. J.
,
Diller
,
K. R.
, and
Baxter
,
C. R.
,
1988
, “
Hydraulic Permeability and Activation Energy of Human Keratinocytes at Subzero Temperatures
,”
Cryobiology
,
25
, pp.
203
211
.
43.
Kiyosawa
,
K.
,
1975
, “
Studies on the Effects of Alcohols on Membrane Water Permeability of Nitella
,”
Protoplasma
,
86
, pp.
243
252
.
44.
Andjus
,
P. R.
,
Djurisic
,
M. R.
,
Zujovic
,
Z.
,
Begovic
,
N.
,
Srejic
,
R.
, and
Vucelic
,
D.
,
1999
, “
Discontinuities in the Temperature Function of Transmembrane Water Transport in Chara: Relation to Ion Transport
,”
J. Membr. Biol.
,
167
, pp.
267
274
.
45.
Verkman
,
A. S.
,
van Hoek
,
A. N.
,
Ma
,
T.
,
Frigeri
,
A.
,
Skach
,
W. R.
,
Mitra
,
A.
,
Tamarappoo
,
B. K.
, and
Farinas
,
J.
,
1996
, “
Water Transport Across Mammalian Cell Membranes
,”
Am. J. Physiol.
,
270
, pp.
C12–C30
C12–C30
.
46.
Nakayama
,
H.
,
Mitsui
,
T.
,
Nishihara
,
M.
, and
Kito
,
M.
,
1980
, “
Relation Between Growth Temperature of E. coli and Phase Transition Temperatures of Its Cytoplasmic and Outer Membranes
,”
Biochim. Biophys. Acta
,
601
(
1
), pp.
1
10
.
47.
Thompson
,
G. A.
,
1996
, “
Lipids and Membrane Function in Green Algae
,”
Biochim. Biophys. Acta
,
1302
, pp.
17
45
.
48.
Brahm
,
J.
,
1983
, “
Permeability of Human Red Cells to a Homologous Series of Aliphatic Alcohols. Limitations of the Continuous Flow-Tube Method
,”
J. Gen. Physiol.
,
81
(
2
), pp.
283
304
.
49.
Brahm
,
J.
,
1982
, “
Diffusional Water Permeability of Erythrocytes and Their Ghosts
,”
J. Gen. Physiol.
,
79
(
5
), pp.
791
819
.
50.
Woods
,
E. J.
,
Liu
,
J.
,
Gilmore
,
J. A.
,
Reid
,
T. J.
,
Gao
,
D. Y.
, and
Critser
,
J. K.
,
1999
, “
Determination of Human Platelet Membrane Permeability Coefficients Using the Kedem-Katchalsky Formalism: Estimates From Two- vs Three-Parameter Fits
,”
Cryobiology
,
38
, pp.
200
208
.
51.
Steudle
,
E.
, and
Zimmerman
,
U.
,
1974
, “
Determination of the Hydraulic Conductivity and Reflection Coefficients in Nitella flexilis by Means of Direct Cell-Turgor Pressure Measurements
,”
Biochim. Biophys. Acta
,
332
, pp.
399
412
.
52.
Finkelstein, A., 1987, “Water Movement Through Lipid Bilayers, Pore, and Plasma Membranes: Theory and Reality,” Wiley, New York, pp. 159–160.
53.
Gilmore
,
J. A.
,
McGann
,
L. E.
,
Liu
,
J.
,
Gao
,
D. Y.
,
Peter
,
A. T.
,
Kleinhans
,
F. W.
, and
Critser
,
J. K.
,
1995
, “
Effect of Cryoprotectant Solutes on Water Permeability of Human Spermatozoa
,”
Biol. Reprod.
,
53
(
5
), pp.
985
995
.
54.
Lobbecke
,
L.
, and
Cevc
,
G.
,
1995
, “
Effects of Short-Chain Alcohols on the Phase Behavior and Interdigitation of Phosphatidylcholine Bilayer Membranes
,”
Biochim. Biophys. Acta
,
1237
, pp.
59
69
.
55.
Weber
,
F. J.
, and
deBont
,
J. A. M.
,
1996
, “
Adaptation Mechanisms of Microorganisms to the Toxic Effects of Organic Solvents on Membranes
,”
Biochim. Biophys. Acta
,
1286
, pp.
225
245
.
56.
Vierl
,
U.
,
Lobbecke
,
L.
,
Nagel
,
N.
, and
Cevc
,
G.
,
1994
, “
Solute Effects on the Colloidal and Phase Behavior of Lipid Bilayer Membranes: Ethanol-Dipalmitoylphosphatidylcholine Mixtures
,”
Biophys. J.
,
68
, pp.
1067
1079
.
57.
Zeng
,
J.
,
Smith
,
K. E.
, and
Chong
,
P. L. G.
,
1993
, “
Effects of Alcohol-Induced Lipid Interdigitation on Proton Permeability in L-alpha-dipalmitoylphosphatidylcholine Vesicles
,”
Biophys. J.
,
65
, pp.
1404
1414
.
58.
Taylor
,
R.
, and
Fletcher
,
R. L.
,
1998
, “
Cryopreservation of Algae—A Review of Methodologies
,”
J. Appl. Phycol.
,
10
, pp.
481
501
.
59.
Brand, J. J. and Diller, K. R., 2003, “Application and Theory of Algal Cryopreservation,” Nova Hedwigia, in press.
You do not currently have access to this content.