The quasi-linear viscoelastic (QLV) theory proposed by Fung (1972) has been frequently used to model the nonlinear time- and history-dependent viscoelastic behavior of many soft tissues. It is common to use five constants to describe the instantaneous elastic response (constants A and B) and reduced relaxation function (constants C, τ1, and τ2) on experiments with finite ramp times followed by stress relaxation to equilibrium. However, a limitation is that the theory is based on a step change in strain which is not possible to perform experimentally. Accounting for this limitation may result in regression algorithms that converge poorly and yield nonunique solutions with highly variable constants, especially for long ramp times (Kwan et al. 1993). The goal of the present study was to introduce an improved approach to obtain the constants for QLV theory that converges to a unique solution with minimal variability. Six goat femur-medial collateral ligament-tibia complexes were subjected to a uniaxial tension test (ramp time of 18.4 s) followed by one hour of stress relaxation. The convoluted QLV constitutive equation was simultaneously curve-fit to the ramping and relaxation portions of the data r2>0.99. Confidence intervals of the constants were generated from a bootstrapping analysis and revealed that constants were distributed within 1% of their median values. For validation, the determined constants were used to predict peak stresses from a separate cyclic stress relaxation test with averaged errors across all specimens measuring less than 6.3±6.0% of the experimental values. For comparison, an analysis that assumed an instantaneous ramp time was also performed and the constants obtained for the two approaches were compared. Significant differences were observed for constants B, C, τ1, and τ2, with τ1 differing by an order of magnitude. By taking into account the ramping phase of the experiment, the approach allows for viscoelastic properties to be determined independent of the strain rate applied. Thus, the results obtained from different laboratories and from different tissues may be compared.

1.
Fung, Y. C., 1972, “Stress Strain History Relations of Soft Tissues in Simple Elongation,” in Biomechanics: Its Foundations and Objectives, eds., Y. C. Fung, N. Perrone, and M. Anliker, PrenticeHall, Englewood Cliffs, NJ, pp. 181–207.
2.
Carew
,
E. O.
,
Talman
,
E. A.
,
Boughner
,
D. R.
, and
Vesely
,
I.
,
1999
, “
Quasi-Linear Viscoelastic Theory Applied to Internal Shearing of Porcine Aortic Valve Leaflets
,”
J. Biomech. Eng.
,
121
(
4
), pp.
386
392
.
3.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2001
, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
J. Biomech. Eng.
,
123
(
5
), pp.
410
417
.
4.
Huyghe
,
J. M.
,
van Campen
,
D. H.
,
Arts
,
T.
, and
Heethaar
,
R. M.
,
1991
, “
The Constitutive Behavior of Passive Heart Muscle Tissue: A Quasi-Linear Viscoelastic Formulation
,”
J. Biomech.
,
24
(
9
), pp.
841
849
.
5.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1997
, “
The Viscoelastic Behavior of the Non-Degenerate Human Lumbar Nucleus Pulposus in Shear
,”
J. Biomech.
,
30
(
10
), pp.
1005
1013
.
6.
Kim
,
S. M.
,
McCulloch
,
T. M.
, and
Rim
,
K.
,
1999
, “
Comparison of Viscoelastic Properties of the Pharyngeal Tissue: Human and Canine
,”
Dysphagia
,
14
(
1
), pp.
8
16
.
7.
Myers
,
B. S.
,
McElhaney
,
J. H.
, and
Doherty
,
B. J.
,
1991
, “
The Viscoelastic Responses of the Human Cervical Spine in Torsion: Experimental Limitations of Quasi-Linear Theory, and a Method for Reducing These Effects
,”
J. Biomech.
,
24
(
9
), pp.
811
817
.
8.
Provenzano
,
P.
,
Lakes
,
R.
,
Keenan
,
T.
, and
Vanderby
, Jr.,
R.
,
2001
, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
,
29
(
10
), pp.
908
914
.
9.
Puso
,
M. A.
, and
Weiss
,
J. A.
,
1998
, “
Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation
,”
J. Biomech. Eng.
,
120
(
1
), pp.
62
70
.
10.
Rousseau
,
E. P.
,
Sauren
,
A. A.
,
van Hout
,
M. C.
, and
van Steenhoven
,
A. A.
,
1983
, “
Elastic and Viscoelastic Material Behavior of Fresh and Glutaraldehyde-Treated Porcine Aortic Valve Tissue
,”
J. Biomech.
,
16
(
5
), pp.
339
348
.
11.
Sauren
,
A. A.
,
van Hout
,
M. C.
,
van Steenhoven
,
A. A.
,
Veldpaus
,
F. E.
, and
Janssen
,
J. D.
,
1983
, “
The Mechanical Properties of Porcine Aortic Valve Tissues
,”
J. Biomech.
,
16
(
5
), pp.
327
337
.
12.
Woo
,
S. L.-Y.
,
Simon
,
B. R.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
,
1980
, “
Quasi-Linear Viscoelastic Properties of Normal Articular Cartilage
,”
J. Biomech. Eng.
,
102
(
2
), pp.
85
90
.
13.
Thomopoulos
,
S.
,
Williams
,
G. R.
,
Gimbel
,
J. A.
,
Favata
,
M.
, and
Soslowsky
,
L. J.
,
2003
, “
Variation of Biomechanical, Structural, and Compositional Properties Along the Tendon to Bone Insertion Site
,”
J. Orthop. Res.
,
21
(
3
), pp.
413
419
.
14.
Funk
,
J. R.
,
Hall
,
G. W.
,
Crandall
,
J. R.
, and
Pilkey
,
W. D.
,
2000
, “
Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments
,”
J. Biomech. Eng.
,
122
(
1
), pp.
15
22
.
15.
Toms
,
S. R.
,
Dakin
,
G. J.
,
Lemons
,
J. E.
, and
Eberhardt
,
A. W.
,
2002
, “
Quasi-Linear Viscoelastic Behavior of the Human Periodontal Ligament
,”
J. Biomech.
,
35
(
10
), pp.
1411
1415
.
16.
Thomopoulos
,
S.
,
Williams
,
G. R.
, and
Soslowsky
,
L. J.
,
2003
, “
Tendon to Bone Healing: Differences in Biomechanical, Structural, and Compositional Properties Due to a Range of Activity Levels
,”
J. Biomech. Eng.
,
125
(
1
), pp.
106
113
.
17.
Elliott
,
D. M.
,
Robinson
,
P. S.
,
Gimbel
,
J. A.
,
Sarver
,
J. J.
,
Abboud
,
J. A.
et al.
,
2003
, “
Effect of Altered Matrix Proteins on Quasilinear Viscoelastic Properties in Transgenic Mouse Tail Tendons
,”
Ann. Biomed. Eng.
,
31
(
5
), pp.
599
605
.
18.
Woo
,
S. L.-Y.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
,
1981
, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medical Collateral Ligament
,”
J. Biomech. Eng.
,
103
(
4
), pp.
293
298
.
19.
Kwan
,
M. K.
,
Lin
,
T. H.
, and
Woo
,
S. L.-Y.
,
1993
, “
On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
,
26
(
4–5
), pp.
447
452
.
20.
Johnson
,
G. A.
,
Tramaglini
,
D. M.
,
Levine
,
R. E.
,
Ohno
,
K.
,
Choi
,
N. Y.
, and
Woo
,
S. L.-Y.
,
1994
, “
Tensile and Viscoelastic Properties of Human Patellar Tendon
,”
J. Orthop. Res.
,
12
(
6
), pp.
796
803
.
21.
Lin, H. C., Kwan, M. K., and Woo, S. L.-Y., 1987, “On the Stress Relaxation Properties of Anterior Cruciate Ligament (ACL),” Proceedings, ASME Adv Bioeng., pp. 5–6.
22.
Nigul
,
I.
, and
Nigul
,
U.
,
1987
, “
On Algorithms of Evaluation of Fung’s Relaxation Function Parameters
,”
J. Biomech.
,
20
(
4
), pp.
343
352
.
23.
Abramowitch
,
S. D.
,
Yagi
,
M.
,
Tsuda
,
E.
, and
Woo
,
S. L.-Y.
,
2003
, “
The Healing Medial Collateral Ligament Following a Combined Anterior Cruciate and Medial Collateral Ligament Injury—A Biomechanical Study in a Goat Model
,”
J. Orthop. Res.
,
21
(
6
), pp.
1124
1130
.
24.
Scheffler
,
S. U.
,
Clineff
,
T. D.
,
Papageorgiou
,
C. D.
,
Debski
,
R. E.
,
Benjamin
,
C.
, and
Woo
,
S. L.-Y.
,
2001
, “
Structure and Function of the Healing Medial Collateral Ligament in a Goat Model
,”
Ann. Biomed. Eng.
,
29
(
2
), pp.
173
180
.
25.
Lee
,
T. Q.
, and
Woo
,
S. L.-Y.
,
1988
, “
A New Method for Determining Cross-Sectional Shape and Area of Soft Tissues
,”
J. Biomech. Eng.
,
110
(
2
), pp.
110
114
.
26.
Woo
,
S. L.-Y.
,
Gomez
,
M. A.
,
Seguchi
,
Y.
,
Endo
,
C. M.
, and
Akeson
,
W. H.
,
1983
, “
Measurement of Mechanical Properties of Ligament Substance From a Bone-Ligament-Bone Preparation
,”
J. Orthop. Res.
,
1
(
1
), pp.
22
29
.
27.
Woo
,
S. L.-Y.
,
Orlando
,
C. A.
,
Camp
,
J. F.
, and
Akeson
,
W. H.
,
1986
, “
Effects of Postmortem Storage by Freezing on Ligament Tensile Behavior
,”
J. Biomech.
,
19
(
5
), pp.
399
404
.
28.
Woo
,
S. L.-Y.
,
Danto
,
M. I.
,
Ohland
,
K. J.
,
Lee
,
T. Q.
, and
Newton
,
P. O.
,
1990
, “
The use of a Laser Micrometer System to Determine the Cross-Sectional Shape and Area of Ligaments: A Comparative Study With Two Existing Methods
,”
J. Biomech. Eng.
,
112
(
4
), pp.
426
431
.
29.
Woo
,
S. L.-Y.
,
1982
, “
Mechanical Properties of Tendons and Ligaments. I. Quasi-Static and Nonlinear Viscoelastic Properties
,”
Biorheology
,
19
(
3
), pp.
385
396
.
30.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, “Chapter 15: Modeling of Data,” in Numerical Recipies in C: The Art of Scientific Computing, Cambridge University Press, New York, NY, pp. 681–688.
31.
Woo
,
S. L.-Y.
,
Peterson
,
R. H.
,
Ohland
,
K. J.
,
Sites
,
T. J.
, and
Danto
,
M. I.
,
1990
, “
The Effects of Strain Rate on the Properties of the Medial Collateral Ligament in Skeletally Immature and Mature Rabbits: A Biomechanical and Histological Study
,”
J. Orthop. Res.
,
8
(
5
), pp.
712
721
.
32.
Yin
,
F. C.
,
Chew
,
P. H.
, and
Zeger
,
S. L.
,
1986
, “
An Approach to Quantification of Biaxial Tissue Stress-Strain Data
,”
J. Biomech.
,
19
(
1
), pp.
27
37
.
33.
Dortmans
,
L. J.
,
Sauren
,
A. A.
, and
Rousseau
,
E. P.
,
1984
, “
Parameter Estimation Using the Quasi-Linear Viscoelastic Model Proposed by Fung
,”
J. Biomech. Eng.
,
106
(
3
), pp.
198
203
.
34.
Sauren
,
A. A.
, and
Rousseau
,
E. P.
,
1983
, “
A Concise Sensitivity Analysis of the Quasi-Linear Viscoelastic Model Proposed by Fung
,”
J. Biomech. Eng.
,
105
(
1
), pp.
92
95
.
35.
Lyon, R. M., Lin, H. C., Kwan, M. K., Hollis, J. M., Akeson, W. H., and Woo, S. L.-Y., 1988, “Stress Relaxation of the Anterior Cruciate Ligament (ACL) and the Patellar Tendon,” Proceedings, 34th Annual Meeting, Orthopaedic Research Society, Atlanta, GA, p. 81.
You do not currently have access to this content.