An increase in anterior laxity following reconstruction of the anterior cruciate ligament (ACL) can result from lengthening of the graft construct in either the regions of fixation and/or the region of the graft substance between the fixations. RSA could be a useful technique to determine lengthening in these regions if a method can be devised for attaching radio-opaque markers to soft tissue grafts so that marker migration from repeated loading of the graft is limited. Therefore, the objectives of this study were 1) to develop a method for attaching radio-opaque markers to an ACL graft that limits marker migration within the graft, 2) to characterize the error of an RSA system used to study migration, and 3) to determine the maximum amount of migration and the time when it occurs during cyclic loading of ACL grafts. Tendon markers were constructed from a 0.8-mm tantalum ball and a stainless steel suture. Ten double-looped tendon grafts were passed through tibial tunnels drilled in bovine tibias and fixed with a tibial fixation device. Two tendon markers were sewn to one tendon bundle of each graft and the grafts were cyclically loaded for 225,000 cycles from 20 N to 170 N. At specified intervals, simultaneous radiographs were obtained of the tendon markers and a radiographic standard of known length. The bias and imprecision in measuring the length of the radiographic standard were 0.0 and 0.046 mm respectively. Marker migration was computed as the change in distance between the two tendon markers along the axis of the tibial tunnel. Marker migration was greatest after 225,000 cycles with a root mean square (RMS) value of less than 0.2 mm. Because the RMS value indicates the error introduced into measurements of lengthening and because this error is small, the method described for attaching markers to an ACL graft has the potential to be useful for determining lengthening of ACL graft constructs in in vivo studies in humans.

1.
Aglietti
,
P.
,
Buzzi
,
R.
,
Zaccherotti
,
G.
, and
De Biase
,
P.
,
1994
, “
Patellar Tendon Versus Doubled Semitendinosus and Gracilis Tendons for Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
22
, pp.
211
217
;
2.
discussion 217–218.
1.
Howell
,
S. M.
, and
Taylor
,
M. A.
,
1996
, “
Brace-Free Rehabilitation, with Early Return to Activity, for Knees Reconstructed with a Double-Looped Semitendinosus and Gracilis Graft
,”
J. Bone Jt. Surg., Am. Vol.
,
78
, pp.
814
825
.
2.
O’Neill
,
D. B.
,
1996
, “
Arthroscopically Assisted Reconstruction of the Anterior Cruciate Ligament. A Prospective Randomized Analysis of Three Techniques
,”
J. Bone Jt. Surg., Am. Vol.
,
78
, pp.
803
813
.
3.
Clark
,
R.
,
Olsen
,
R. E.
,
Larson
,
B. J.
,
Goble
,
E. M.
, and
Farrer
,
R. P.
,
1998
, “
Cross-Pin Femoral Fixation: A New Technique for Hamstring Anterior Cruciate Ligament Reconstruction of the Knee
,”
Arthroscopy
,
14
, pp.
258
267
.
4.
Howell
,
S. M.
, and
Deutsch
,
M. L.
,
1999
, “
Comparison of Endoscopic and Two-Incision Techniques for Reconstructing a Torn Anterior Cruciate Ligament Using Hamstring Tendons
,”
Arthroscopy
,
15
, pp.
594
606
.
5.
Giurea
,
M.
,
Zorilla
,
P.
,
Amis
,
A. A.
, and
Aichroth
,
P.
,
1999
, “
Comparative Pull-out and Cyclic-Loading Strength Tests of Anchorage of Hamstring Tendon Grafts in Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
27
, pp.
621
625
.
6.
Magen
,
H. E.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
1999
, “
Structural Properties of Six Tibial Fixation Methods for Anterior Cruciate Ligament Soft Tissue Grafts
,”
Am. J. Sports Med.
,
27
, pp.
35
43
.
7.
Cuppone
,
M.
, and
Seedhom
,
B. B.
,
2001
, “
Effect of Implant Lengthening and Mode of Fixation on Knee Laxity after ACL Reconstruction with an Artificial Ligament: A Cadaveric Study
,”
J. Orthop. Sci.
,
6
, pp.
253
261
.
8.
Donahue
,
T. L.
,
Gregersen
,
C.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2001
, “
Comparison of Viscoelastic, Structural, and Material Properties of Double-Looped Anterior Cruciate Ligament Grafts Made from Bovine Digital Extensor and Human Hamstring Tendons
,”
J. Biomech. Eng.
,
123
, pp.
162
169
.
9.
Selvik
,
G.
,
1989
, “
Roentgen Stereophotogrammetry. A Method for the Study of the Kinematics of the Skeletal System
,”
Acta Orthop. Scand. Suppl.
,
232
, pp.
1
51
.
10.
Fride´n
,
T.
,
Ryd
,
L.
, and
Lindstrand
,
A.
,
1992
, “
Laxity and Graft Fixation after Reconstruction of the Anterior Cruciate Ligament. A Roentgen Stereophotogrammetric Analysis of 11 Patients
,”
Acta Orthop. Scand.
,
63
, pp.
80
84
.
11.
Soavi
,
R.
,
Motta
,
M.
, and
Visani
,
A.
,
1999
, “
Variation of the Spatial Position Computed by Roentgen Stereophotogrammetric Analysis (RSA) under Non-Standard Conditions
,”
Med. Eng. Phys.
,
21
, pp.
575
581
.
12.
Brown
,
G. A.
,
Pena
,
F.
,
Grontvedt
,
T.
,
Labadie
,
D.
, and
Engebretsen
,
L.
,
1996
, “
Fixation Strength of Interference Screw Fixation in Bovine, Young Human, and Elderly Human Cadaver Knees: Influence of Insertion Torque, Tunnel-Bone Block Gap, and Interference
,”
Knee Surg. Sports Traumatol. Arthrosc
,
3
, pp.
238
244
.
13.
van Dijk
,
R.
,
Huiskes
,
R.
, and
Selvik
,
G.
,
1979
, “
Roentgen Stereophotogrammetric Methods for the Evaluation of the Three Dimensional Kinematic Behavior and Cruciate Ligament Length Patterns of the Human Knee Joint
,”
J. Biomech.
,
12
, pp.
727
731
.
14.
Morrison
,
J. B.
,
1969
, “
Function of the Knee Joint in Various Activities
,”
Biomed. Eng.
,
4
, pp.
573
580
.
15.
Cummings, J. F., Grood, E. S., and O’Brien, P. L., 1993, “Tracking of Anterior Translation after ACL Reconstruction: Measurements in a Goat Model.,” Transactions of the 39th Annual Meeting, Orthopaedic Research Society, 18, pp. 32.
16.
de Lange
,
A.
,
Huiskes
,
R.
, and
Kauer
,
J. M.
,
1990
, “
Wrist-Joint Ligament Length Changes in Flexion and Deviation of the Hand: An Experimental Study
,”
J. Orthop. Res.
,
8
, pp.
722
730
.
17.
1997, Practical Galvanic Series, Army Missile Command, Report RS-TR-67-11.
18.
Baboian, R., and Pohlamn, S. L., 1987, “Galvanic Corrosion,” in Metals Handbook, 9th Edition, Vol. 13, ASM International, Metals Park, OH, pp. 83–87.
19.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1977
, “
The Compressive Behavior of Bone as a Two-Phase Porous Structure
,”
J. Bone Jt. Surg., Am. Vol.
,
59
, pp.
954
962
.
20.
Yuan
,
X.
, and
Ryd
,
L.
,
2000
, “
Accuracy Analysis for RSA: A Computer Simulation Study on 3D Marker Reconstruction
,”
J. Biomech.
,
33
, pp.
493
498
.
21.
Vrooman
,
H. A.
,
Valstar
,
E. R.
,
Brand
,
G. J.
,
Admiraal
,
D. R.
,
Rozing
,
P. M.
, and
Reiber
,
J. H.
,
1998
, “
Fast and Accurate Automated Measurements in Digitized Stereophotogrammetric Radiographs
,”
J. Biomech.
,
31
, pp.
491
498
.
22.
Rodeo
,
S. A.
,
Arnoczky
,
S. P.
,
Torzilli
,
P. A.
,
Hidaka
,
C.
, and
Warren
,
R. F.
,
1993
, “
Tendon-Healing in a Bone Tunnel. A Biomechanical and Histological Study in the Dog
,”
J. Bone Jt. Surg., Am. Vol.
,
75
, pp.
1795
1803
.
23.
Zacharias
,
I.
,
Howell
,
S. M.
,
Hull
,
M. L.
, and
Lawhorn
,
K. W.
,
2001
, “
In Vivo Calibration of a Femoral Fixation Device Transducer for Measuring Anterior Cruciate Ligament Graft Tension: A Study in an Ovine Model
,”
J. Biomech. Eng.
,
123
, pp.
355
361
.
24.
Sequeira
,
M. M.
,
Rickenbach
,
M.
,
Wietlisbach
,
V.
,
Tullen
,
B.
, and
Schutz
,
Y.
,
1995
, “
Physical Activity Assessment Using a Pedometer and Its Comparison with a Questionnaire in a Large Population Survey
,”
Am. J. Epidemiol.
,
142
, pp.
989
999
.
25.
Weiler
,
A.
,
Peters
,
G.
,
Maurer
,
J.
,
Unterhauser
,
F. N.
, and
Sudkamp
,
N. P.
,
2001
, “
Biomechanical Properties and Vascularity of an Anterior Cruciate Ligament Graft Can Be Predicted by Contrast-Enhanced Magnetic Resonance Imaging. A Two-Year Study in Sheep
,”
Am. J. Sports Med.
,
29
, pp.
751
761
.
26.
Rougraff
,
B.
,
Shelbourne
,
K. D.
,
Gerth
,
P. K.
, and
Warner
,
J.
,
1993
, “
Arthroscopic and Histologic Analysis of Human Patellar Tendon Autografts Used for Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
21
, pp.
277
284
.
You do not currently have access to this content.