An anatomical dynamic model consisting of three body segments, femur, tibia and patella, has been developed in order to determine the three-dimensional dynamic response of the human knee. Deformable contact was allowed at all articular surfaces, which were mathematically represented using Coons’ bicubic surface patches. Nonlinear elastic springs were used to model all ligamentous structures. Two joint coordinate systems were employed to describe the six-degrees-of-freedom tibio-femoral (TF) and patello-femoral (PF) joint motions using twelve kinematic parameters. Two versions of the model were developed to account for wrapping and nonwrapping of the quadriceps tendon around the femur. Model equations consist of twelve nonlinear second-order ordinary differential equations coupled with nonlinear algebraic constraint equations resulting in a Differential-Algebraic Equations (DAE) system that was solved using the D_ifferential/A_lgebraic S_ystem S_ol_ver (DASSL) developed at Lawrence Livermore National Laboratory. Model calculations were performed to simulate the knee extension exercise by applying non-linear forcing functions to the quadriceps tendon. Under the conditions tested, both “screw home mechanism” and patellar flexion lagging were predicted. Throughout the entire range of motion, the medial component of the TF contact force was found to be larger than the lateral one while the lateral component of the PF contact force was found to be larger than the medial one. The anterior and posterior fibers of both anterior and posterior cruciate ligaments, ACL and PCL, respectively, had opposite force patterns: the posterior fibers were most taut at full extension while the anterior fibers were most taut near 90° of flexion. The ACL was found to carry a larger total force than the PCL at full extension, while the PCL carried a larger total force than the ACL in the range of 75° to 90° of flexion.

1.
Hefzy
,
M. S.
, and
Grood
,
E. S.
,
1988
, “
Review of Knee Models
,”
Appl. Mech. Rev.
,
41
(
1
), pp.
1
3
.
2.
Hefzy
,
M. S.
, and
Abdel-Rahman
,
E. M.
,
1995
, “
Dynamic Modeling of the Human Knee Joint: Formulation and Solution Technique. A Review Paper
,”
J. Biomed. Eng.: Application, Basis and Communication
,
7
(
1
), pp.
5
21
.
3.
Hefzy
,
M. S.
, and
Cooke
,
T. D. V.
,
1996
, “
Review of Knee Models: 1996 Update
,”
Appl. Mech. Rev.
,
49
(
10
), pp.
187
193
.
4.
Donahue
,
T. L. H.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2002
, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
J. Biomech. Eng.
,
124
, pp.
273
280
.
5.
Suggs
,
J.
,
Wang
,
C.
, and
Li
,
G.
,
2003
, “
The Effect of Graft Stiffness on Knee Joint Biomechanics after ACL Reconstruction—A 3D Computational Simulation
,”
Clin. Biomech. (Los Angel. Calif.)
,
18
, pp.
35
43
.
6.
Li
,
G.
,
Suggs
,
J.
, and
Gill
,
T.
,
2002
, “
The Effect of Anterior Cruciate Ligament Injury on Knee Joint Function under a Simulated Muscle Load: A Three-Dimensional Computational Simulation
,”
Ann. Biomed. Eng.
,
30
, pp.
713
720
.
7.
Liu
,
W.
, and
Maitland
,
M. E.
,
2000
, “
The Effect of Hamstring Muscle Compensation for Anterior Laxity in the ACL-Deficient Knee During Gait
,”
J. Biomech.
,
33
, pp.
871
879
.
8.
Huss
,
R. A.
,
Holstein
,
H.
, and
O’Connor
,
J. J.
,
2000
, “
A Mathematical Model of Forces in the Knee Under Isometric Quadriceps Contractions
,”
Clin. Biomech. (Los Angel. Calif.)
,
15
, pp.
112
122
.
9.
Li
,
G.
,
Gil
,
J.
,
Kanamori
,
A.
, and
Woo
,
S. L.-Y.
,
1999
, “
A Validated Three-Dimensional Computational Model of a Human Knee Joint
,”
J. Biomech. Eng.
,
121
, pp.
657
662
.
10.
Wilson
,
D. R.
,
Feikes
,
J. D.
, and
O’Connor
,
J. J.
,
1998
, “
Ligaments and Articular Contact Guide Passive Knee Flexion
,”
J. Biomech.
,
31
, pp.
1127
1136
.
11.
Hefzy
,
M. S.
, and
Yang
,
H.
,
1993
, “
A Three-Dimensional Anatomical Model of the Human Patello-Femoral Joint, for the Determination of Patello-Femoral Motions and Contact Characteristics
,”
J. Biomed. Eng.
,
15
, pp.
289
301
.
12.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1996
, “
Validation of a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
29
(
7
), pp.
955
961
.
13.
Heegaard
,
J.
,
Leyvraz
,
P. F.
,
Curnier
,
A.
,
Rakotomanana
,
L.
, and
Huiskes
,
R.
,
1995
, “
The Biomechanics of the Human Patella During Passive Knee Flexion
,”
J. Biomech.
,
28
(
11
), pp.
1265
1279
.
14.
Hirokawa
,
S.
,
1991
, “
Three-Dimensional Mathematical Model Analysis of the Patellofemoral Joint
,”
J. Biomech.
,
24
(
8
), pp.
659
671
.
15.
Abdel-Rahman
,
E. M.
, and
Hefzy
,
M. S.
,
1998
, “
Three-Dimensional Dynamic Behavior of the Human Knee Joint under Impact Loading
,”
Med. Eng. Phys.
,
20
, pp.
276
290
.
16.
Tumer
,
S. T.
, and
Engin
,
A. E.
,
1993
, “
Three-Body Segment Dynamic Model of the Human Knee
,”
J. Biomech. Eng.
,
115
, pp.
350
356
.
17.
Ling
,
Z.-K.
,
Guo
,
H.-Q.
, and
Boersma
,
S.
,
1997
, “
Analytical Study on the Kinematics and Dynamic Behaviors of a Knee Joint
,”
Med. Eng. Phys.
,
19
(
1
), pp.
29
36
.
18.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1991
, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
24
(
11
), pp.
1019
1031
.
19.
Hefzy
,
M. S.
,
Yang
,
H.
,
Abdel-Rahman
,
E. M.
, and
Alkhazim
,
M.
,
1997
, “
Effects of Knee Flexion Angle and Quadriceps Contraction on Hamstrings Co-Contraction
,”
Biomed. Eng. Appl. Basis Commun.
,
BED-36
, pp.
145
146
.
20.
Hefzy, M. S., and Yang, H., 1998, “Effects of Posterior Cruciate Insufficiency on Tibio-femoral and Patello-Femoral Contact Forces During Isometric Co-Contraction of the Quadriceps and Hamstrings,” Transactions of the 44th Annual Orthopaedic Research Society Meeting, 23(2), pp. 1034.
21.
McGinty
,
G.
,
Irrgang
,
J. J.
, and
Pezullo
,
D.
,
2000
, “
Biomechanical considerations for rehabilitation of the knee
,”
Clin. Biomech. (Los Angel. Calif.)
,
15
, pp.
160
166
.
22.
Grood
,
E. S.
,
Suntay
,
W. J.
,
Noyes
,
F. R.
, and
Butler
,
D. L.
,
1984
, “
Biomechanics of the Knee Extension Exercise
,”
J. Bone Jt. Surg.
,
66A
, pp.
725
733
.
23.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of the Three-Dimensional Motions: Applications to the Knee
,”
J. Biomed. Eng.
,
105
, pp.
136
144
.
24.
Mow
,
V. C.
,
Athesian
,
G. A.
, and
Spilker
,
R. L.
,
1993
, “
Biomechanics of Diarthrodial Joints: A Review of Twenty Years of Progress
,”
J. Biomech. Eng.
,
115
, pp.
460
467
.
25.
Thambyah
,
A.
,
Thiagarajan
,
P.
, and
Goh
,
J. C. H.
,
2000
, “
Biomechanical Study on the Effect of Twisted Human Patellar Tendon
,”
Clin. Biomech. (Los Angel. Calif.)
,
15
, pp.
756
760
.
26.
Brenan, K. E., Campbell, S. L., and Petzold, L. R., 1989, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, North-Holland, Elsevier Science Publishing Co., Inc.
27.
Petzold, L. R., 1983, “A Description of DASSL: A Differential/Algebraic System Solver,” In: Stepleman, R. S., Carver, M., Peskin, R., and Vichnevetsky, A., editors, Scientific Computing: Volume 1, IMACS transactions on scientific computation. Amsterdam-New York-Oxford: North Holland Pub. Co., pp. 65–68.
28.
Yasuda
,
K.
,
Erickson
,
A. R.
,
Johnson
,
R. J.
, and
Pope
,
M. H.
,
1992
, “
Dynamic strain behavior in the medial collateral and anterior cruciate ligaments during lateral impact loading
,”
Trans. Orthop. Res. Soc.
,
17
, pp.
127
127
.
29.
Shoemaker
,
S. C.
,
Adams
,
D.
,
Daniel
,
D. M.
, and
Woo
,
S. L.-Y.
,
1993
, “
Quadriceps/Anterior Cruciate Graft Interaction: An in Vitro Study of Joint Kinematics and Anterior Cruciate Ligament Graft Tension
,”
Clin. Biomech. (Los Angel. Calif.)
,
294
, pp.
379
390
.
30.
Biden, E., O’Connor, J., and Goodfellow, J., 1984, “Tibial Rotation in the Cadaver Knee,” Transactions of the 30th Meeting of the Orthopaedic Research Society, pp. 30.
31.
FitzPatrick, D. P., 1989, “Mechanics of the Knee Joint,” D.Phil. Thesis, Univ. of Oxford.
32.
Wilson
,
D. R.
,
Feikes
,
A. B.
,
Zavatsky
,
A. B.
, and
O’Connor
,
J. J.
,
2000
, “
The Components of Passive Knee Movement are Coupled to Flexion Angle
,”
J. Biomech.
,
33
, pp.
465
473
.
33.
Race
,
A.
, and
Amis
,
A. A.
,
1994
, “
The Mechanical Properties of the Two Bundles of the Human Posterior Cruciate Ligament
,”
J. Biomech.
,
27
(
1
), pp.
13
24
.
34.
Grood
,
E. S.
,
Hefzy
,
M. S.
, and
Lindenfield
,
T. N.
,
1989
, “
Factors Affecting the Region of the Most Isometric Femoral Attachments. Part I: The Posterior Cruciate Ligament
,”
Am. J. Sports Med.
,
17
(
2
), pp.
197
207
.
35.
Hefzy
,
M. S.
, and
Grood
,
E. S.
,
1986
, “
Sensitivity of Insertion Locations on Length Pattern of Anterior Cruciate Ligament Fibers
,”
ASME J. Biomech. Eng.
,
108
, pp.
73
82
.
36.
Rovick
,
J. S.
,
Reuben
,
J. D.
,
Schrager
,
R. J.
, and
Walker
,
P. S.
,
1991
, “
Relation between Knee Motion and Ligament Length Patterns
,”
Clin. Biomech. (Los Angel. Calif.)
,
6
, pp.
213
220
.
37.
Wilk
,
K. E.
,
Escamilla
,
R. F.
,
Fleisig
,
G. S.
,
Barrentine
,
S. W.
,
Andrews
,
J. R.
, and
Boyd
,
M. L.
,
1996
, “
A Comparison of Tibiofemoral Joint Forces and Electromyographic Activity During Open and Closed Kinetic Chain Exercises
,”
Am. J. Sports Med.
,
24
(
4
), pp.
518
527
.
38.
Hirokawa
,
S.
,
Solomonow
,
M.
, and
Lu
,
Y.
,
1992
, “
Anterior-Posterior and Rotational Displacement of the Tibia Elicited by Quadriceps Contraction
,”
Am. J. Sports Med.
,
20
, pp.
299
306
.
39.
Kaufman
,
K. R.
,
An
,
K. N.
,
Litchy
,
W. J.
,
Morrey
,
B. F.
, and
Chao
,
E. Y.
,
1991
, “
Dynamic Joint Forces During Knee Isokinetic Exercise
,”
Am. J. Sports Med.
,
19
, pp.
305
316
.
40.
Walker
,
P. S.
, and
Hajek
,
J. V.
,
1972
, “
The Load Bearing Area in the Knee Joint
,”
J. Biomech.
,
5
, pp.
581
589
.
41.
Cheng, C. K., 1988, “A Mathematical Model for Predicting Bony Contact Forces and Muscle Forces at the Knee During Human Gait,” Ph.D. Dissertation. Iowa City (IA): The University of Iowa.
42.
Morrison
,
J. B.
,
1970
, “
The Mechanics of the Knee Joint in Relation to Normal Walking
,”
J. Biomech.
,
3
, pp.
51
61
.
43.
Van Eijden
,
T. M.
,
Kouwenhoven
,
E.
,
Verbury
,
J.
, and
Weijs
,
W. A.
,
1986
, “
A Mathematical Model of the Patellofemoral Joint
,”
J. Biomech.
,
21
, pp.
17
22
.
44.
Gill
,
H. S.
, and
O’Connor
,
J. J.
,
1996
, “
A Biarticulating 2-Dimensional Model of the Human Patellofemoral Joint
,”
Clin. Biomech. (Los Angel. Calif.)
,
11
(
2
), pp.
81
89
.
45.
Ahmed
,
A. M.
,
Burke
,
D. L.
, and
Yu
,
A.
,
1983
, “
In Vitro Measurement of Static Pressure Distribution in Synovial Joints-Part II: The Retropatellar Surface
,”
J. Biomech. Eng.
,
105
, pp.
226
236
.
46.
Buff
,
H.
,
Jones
,
L. C.
, and
Hungerford
,
D. S.
,
1988
, “
Experimental Determination of Forces Transmitted through the Patellofemoral Joint
,”
J. Biomech.
,
21
, pp.
17
22
.
47.
Hille
,
E.
,
Schulita
,
K. P.
,
Henrichs
,
C.
, and
Schneider
,
T.
,
1985
, “
Pressure and Contact-Surface Measurements within the Femoro-Patellar Joint and their Variations Following Lateral Release
,”
Arch. Orthop. Trauma Surg.
,
104
, pp.
275
282
.
48.
Hefzy
,
M. S.
,
Jackson
,
W. T.
,
Saddemi
,
S. R.
, and
Hsieh
,
Y. F.
,
1992
, “
Effects of Tibial Rotations on Patellar Tracking and Patello-Femoral Contact Areas
,”
J. Biomed. Eng.
,
14
, pp.
329
343
.
49.
Hehne
,
H. J.
,
1990
, “
Biomechanics of the Patellofemoral Joint and Its Clinical Relevance
,”
Clin. Orthop. Relat. Res.
,
258
, pp.
73
85
.
50.
Cohen
,
Z. A.
,
Roglic
,
H.
,
Grelsamer
,
R. P.
,
Henry
,
J. H.
,
Levine
,
W. N.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2001
, “
Patellofemoral Stresses During Open and Closed Kinetic Chain Exercises
,”
Am. J. Sports Med.
,
29
(
4
), pp.
480
487
.
51.
Takeuchi
,
R.
,
Koshino
,
T.
,
Saito
,
T.
,
Suzuki
,
E.
, and
Sakai
,
N.
,
1999
, “
Patello-Femoral Contact Area and Compressive Force after Anteromedial Displacement of Tibial Tuberosity in Amputated Knees
,”
The Knee
,
6
, pp.
109
114
.
52.
Moeinzadeh, M. H., Engin, 1988, “Dynamic Modeling of the Human Knee Joint,” In: Computational Methods in Bioengineering, Proceedings of the 1988 WAM. Chicago (IL): ASME; BED-Vol. 9, pp. 145–156.
You do not currently have access to this content.