Fluid dynamics of Total Cavo-Pulmonary Connection (TCPC) were studied in 3-D models based on real dimensions obtained by Magnetic Resonance (MR) images. Models differ in terms of shape (intra- or extra-cardiac conduit) and cross section (with or without patch enlargement) of the inferior caval (IVC) anastomosis connection. Realistic pulsatile flows were submitted to both the venae cavae, while porous portions were added at the end of the pulmonary arteries to reproduce the pulmonary afterload. The dissipated power and the flow distribution into the lungs were calculated at different values of pulmonary arteriolar resistances (PAR). The most important results are: i) power dissipation in different TCPC designs is influenced by the actual cross sectional area of the IVC anastomosis and ii) the inclusion of a patch minimizes the dissipated power (range 4–13 mW vs. 14–56 mW). Results also show that the perfusion of the right lung is between 15% and 30% of the whole IVC blood flow when the PAR are evenly distributed between the right and the left lung.

1.
Fontan
,
F.
, and
Baudet
,
E.
,
1971
, “
Surgical Repair of Tricuspid Atresia
,”
Thorax
,
26
, pp.
240
248
.
2.
de Leval
,
M. R.
,
Kilner
,
P.
,
Gewillig
,
M.
, and
Bull
,
C.
,
1988
, “
Total Cavopulmonary Connection: a Logical Alternative to Atriopulmonary Connection for Complex Fontan Operations
,”
J. Thorac. Cardiovasc. Surg.
,
96
, pp.
682
695
.
3.
Humes
,
R. A.
,
Feldt
,
R. H.
,
Porter
,
C. J.
,
Julsrud
,
P. R.
,
Puga
,
F. J.
, and
Danielson
,
G. K.
,
1988
, “
The Modified Fontan Operation for Asplenia and Polysplenia Syndromes
,”
J. Thorac. Cardiovasc. Surg.
,
96
, pp.
212
218
.
4.
Marcelletti
,
C.
,
Corno
,
A.
,
Giannico
,
S.
, and
Marino
,
B.
,
1990
, “
Inferior Vena Cava-Pulmonary Artery Extracardiac Conduit: a New Form of Right Heart Bypass
,”
J. Thorac. Cardiovasc. Surg.
,
100
, pp.
228
232
.
5.
Bridges
,
N. D.
,
Jonas
,
R. A.
,
Mayer
,
J. E.
,
Flanagan
,
M. F.
,
Keane
,
J. F.
, and
Castaneda
,
A. R.
,
1990
, “
Bidirectional Cavopulmonary Anastomosis as Interim Palliation for High-Risk Fontan Candidates. Early Results
,”
Circulation
,
82
, pp.
170
176
.
6.
Hopkins
,
R. A.
,
Armstrong
,
B. E.
,
Serwer
,
G. A.
,
Peterson
,
R. J.
, and
Oldham
,
H. N.
,
1985
, “
Physiological Rationale for Bidirectional Cavopulmonarty Shunt. A Versatile Complement to the Fontan Principle
,”
J. Thorac. Cardiovasc. Surg.
,
90
, pp.
391
398
.
7.
Douglas
,
W. I.
,
Goldberg
,
C. S.
,
Mosca
,
R. S.
,
Law
,
I. H.
, and
Bove
,
E. L.
,
1999
, “
The Hemi-Fontan Procedure for Hypoplastic Left Heart Syndrome: Intermediate Outcome and Suitability for Fontan
,”
Ann. Thorac. Cardiovasc. Surg.
,
68
, pp.
1361
1368
.
8.
Gerdes
,
A.
,
Kunze
,
J.
,
Pfister
,
G.
, and
Sievers
,
H. H.
,
1999
, “
Addition of a Small Curvature Reduces Power Losses Across Total Cavopulmonary Connections
,”
Ann. Thorac. Cardiovasc. Surg.
,
67
, pp.
1760
1764
.
9.
Low
,
H. T.
,
Chew
,
Y. T.
, and
Lee
,
C. N.
,
1993
, “
Flow Studies on Atriopulmonary and Cavopulmonary Connections of the Fontan Operations for Congenital Heart Defects
,”
J. Biomech. Eng.
,
15
, pp.
303
307
.
10.
Kim
,
Y. H.
,
Walker
,
P. G.
,
Fontaine
,
A. A.
,
Panchal
,
S.
,
Ensley
,
A. E.
,
Oshinski
,
J.
,
Sharma
,
S.
,
Ha
,
B.
,
Lucas
,
C. L.
, and
Yoganathan
,
A. P.
,
1995
, “
Hemodynamics of the Fontan Connection: an In Vitro Study
,”
J. Biomech. Eng.
,
117
, pp.
423
428
.
11.
Sharma
,
S.
,
Goudy
,
S.
,
Walker
,
P.
,
Panchal
,
S.
,
Ensley
,
A.
,
Kanter
,
K.
,
Tam
,
V.
,
Fyfe
,
D.
, and
Yoganathan
,
A.
,
1996
, “
In Vitro Flow Experiments for Determination of Optimal Geometry of Total Cavopulmonary Connection for Surgical Repair of Children With Functional Single Ventricle
,”
J. Am. Coll. Cardiol.
,
27
, pp.
1264
1269
.
12.
Sharma
,
S.
,
Ensley
,
A.
,
Chatzimavroudis
,
G. P.
,
Fontaine
,
A. A.
, and
Yoganathan
,
A. P.
,
1997
, “
Does the Addition of Curvature at the Total Cavopulmonary Connection (TCPC) Site Reduce Power Losses?
J. Am. Coll. Cardiol.
,
29
, pp.
1043
1059
.
13.
Kim
,
S. H.
,
Park
,
Y. H.
, and
Cho
,
B. K.
,
1997
, “
Hemodynamics of the Total Cavopulmonary Connection: an In Vitro Study
,”
Yonsei Med. J.
38
, pp.
33
39
.
14.
Ensley
,
A. E.
,
Lynch
,
P.
,
Chatzimavroudis
,
G. P.
,
Lucas
,
C.
,
Sharma
,
S.
, and
Yoganathan
,
A. P.
,
1999
, “
Toward Designing the Optimal Total Cavopulmonary Connection: an In Vitro Study
,”
Ann. Thorac. Cardiovasc. Surg.
,
68
, pp.
1384
1390
.
15.
Lardo
,
A. C.
,
Webber
,
S. A.
,
Friehs
,
I.
,
del Nido
,
P. J.
, and
Cape
,
E. G.
,
1999
, “
Fluid Dynamic Comparison of Intra-Atrial and Extracardiac Total Cavopulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
,
117
, pp.
697
704
.
16.
Walker
,
P. G.
,
Howe
,
T. T.
,
Davies
,
R. L.
,
Fisher
,
J.
, and
Watterson
,
K. G.
,
2002
, “
Distribution of Hepatic Venous Blood in the Total Cavo-Pulmonary Connection: an In Vitro Study
,”
Eur. J. Cardiothorac Surg.
,
17
, pp.
658
665
.
17.
Grigioni
,
M.
,
Amodeo
,
A.
,
Daniele
,
C.
,
D’Avenio
,
G.
,
Formigari
,
R.
, and
Di Donato
,
R. M.
,
2002
, “
Particle Image Velocimetry Analysis of the Flow Field in the Total Cavopulmonary Connection
,”
Artif. Organs
,
24
, pp.
946
952
.
18.
DeGroff
,
C. G.
,
Carlton
,
J. D.
,
Weinberg
,
C. E.
,
Ellison
,
M. C.
,
Shandas
,
R.
, and
Valdes-Cruz
,
L.
,
2002
, “
Effect of Vessel Size on the Flow Efficiency of the Total Cavopulmonary Connection: In Vitro Studies
,”
Pediatr. Cardiol.
,
23
, pp.
171
177
.
19.
Van Haesdonck
,
J. M.
,
Mertens
,
L.
,
Sizaire
,
R.
,
Montas
,
G.
,
Purnode
,
B.
,
Daenen
,
W.
,
Crochet
,
M.
, and
Gewillig
,
M.
,
1995
, “
Comparison by Computerized Numeric Modeling of Energy Losses in Different Fontan Connection
,”
Circulation
,
92
, Suppl 2, pp.
II322–II326
II322–II326
.
20.
de Leval
,
M. R.
,
Dubini
,
G.
,
Migliavacca
,
F.
,
Jalali
,
H.
,
Camporini
,
G.
,
Redington
,
A.
, and
Pietrabissa
,
R.
,
1996
, “
Use of Computational Fluid Dynamics in the Design of Surgical Procedures: Application to the Study of Competitive Flows in Cavo-Pulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
,
111
, pp.
502
513
.
21.
Dubini
,
G.
,
de Leval
,
M. R.
,
Pietrabissa
,
R.
,
Montevecchi
,
F. M.
, and
Fumero
,
R.
,
1996
, “
A Numerical Fluid Mechanical Study of Repaired Congenital Heart Defects. Application to the Total Cavo-Pulmonary Connection
,”
J. Biomech.
,
29
, pp.
111
121
.
22.
Migliavacca
,
F.
,
Kilner
,
P. J.
,
Pennati
,
G.
,
Dubini
,
G.
,
Pietrabissa
,
R.
,
Fumero
,
R.
, and
de Leval
,
M. R.
,
1999
, “
Computational Fluid Dynamic and Magnetic Resonance Analyses of Flow Distribution Between Lungs After Total Cavopulmonary Connection
,”
IEEE Trans. Biomed. Eng.
,
46
, pp.
393
399
.
23.
Migliavacca
,
F.
,
de Leval
,
M. R.
,
Dubini
,
G.
,
Pietrabissa
,
R.
, and
Fumero
,
R.
,
1999
, “
Computational Fluid Dynamic Simulations of Cavopulmonary Connections With an Extracardiac Lateral Conduit
,”
Med. Eng. Phys.
,
23
, pp.
187
193
.
24.
Healy
,
T. M.
,
Lucas
,
C.
, and
Yoganathan
,
A. P.
,
2001
, “
Noninvasive Fluid Dynamic Power Loss Assessments for Total Cavopulmonary Connections Using the Viscous Dissipation Function: a Feasibility Study
,”
J. Biomech. Eng.
,
123
, pp.
317
324
.
25.
Ryu
,
K.
,
Healy
,
T. M.
,
Ensley
,
A. E.
,
Sharma
,
S.
,
Lucas
,
C.
, and
Yoganathan
,
A. P.
,
2001
, “
Importance of Accurate Geometry in the Study of the Total Cavopulmonary Connection: Computational Simulations and In Vitro Experiments
,”
Ann. Biomed. Eng.
,
29
, pp.
844
853
.
26.
DeGroff
,
C.
, and
Shandas
,
R.
,
2002
, “
Designing the Optimal Total Cavopulmonary Connection: Pulsatile Versus Steady Flow Experiments
,”
Med. Sci. Monit.
,
8
, pp.
MT41–MT45
MT41–MT45
.
27.
Bolzon
,
G.
,
Pedrizzetti
,
G.
,
Grigioni
,
M.
,
Zovatto
,
L.
,
Daniele
,
C.
, and
D’Avenio
,
G.
,
2002
, “
Flow on the Symmetry Plane of a Total Cavo-Pulmonary Connection
,”
J. Biomech.
,
35
, pp.
595
608
.
28.
Redington
,
A. N.
,
Penny
,
D.
, and
Shinebourne
,
E. A.
,
1991
, “
Pulmonary Blood Flow After Total Cavopulmonary Shunt
,”
Br. Heart J.
,
65
, pp.
213
217
.
29.
Houlind
,
K.
,
Stenbog
,
E. V.
,
Sorensen
,
K. E.
,
Emmertsen
,
K.
,
Hansen
,
O. K.
,
Rybro
,
L.
, and
Hjortdal
,
V. E.
,
1999
, “
Pulmonary and Caval Flow Dynamics After Total Cavopulmonary Connection
,”
Heart
,
81
, pp.
67
72
.
30.
Guadagni
,
G.
,
Bove
,
E. L.
,
Migliavacca
,
F.
, and
Dubini
,
G.
,
2001
, “
Effects of Pulmonary Afterload on the Haemodynamics After the Hemi-Fontan Procedure
,”
Med. Eng. Phys.
,
23
, pp.
293
298
.
31.
Guadagni, G., Migliavacca, F., Dubini, G., and Bove, E. L., 2001, “Simulations of Surgical Planning for Fontan Procedures,” G. W. Schmid-Scho¨nbein, ed., in Proceedings of the 2001 Summer Bioengineering Conference, Ed. ASME—The American Society of Mechanical Engineers, 50, New York, pp. 911–912.
32.
Bove
,
E. L.
,
1998
, “
Current Status of Staged Reconstruction for Hypoplastic Left Heart Syndrome
,”
Pediatr. Cardiol.
,
19
, pp.
308
315
.
33.
Khunatorn
,
Y.
,
Mahalingam
,
S.
,
DeGroff
,
C. G.
, and
Shandas
,
R.
,
2002
, “
Influence of Connection Geometry and SVC-IVC Flow Rate Ratio on Flow Structures Within the Total Cavopulmonary Connection: A Numerical Study
,”
J. Biomech. Eng.
,
124
, pp.
364
377
.
34.
Ferrandez
,
A.
,
David
,
T.
,
Bamford
,
J.
,
Scott
,
J.
, and
Guthrie
,
A.
,
2000
, “
Computational Models of Blood Flow in the Circle of Willis
,”
Comput. Methods Biomech. Biomed. Engin.
,
4
, pp.
1
26
.
35.
Lagana`
,
K.
,
Dubini
,
G.
,
Migliavacca
,
F.
,
Pietrabissa
,
R.
,
Pennati
,
G.
,
Veneziani
,
A.
, and
Quarteroni
,
A.
,
2002
, “
Multiscale Modelling as a Tool to Prescribe Realistic Boundary Conditions for the Study of Surgical Procedures
,”
Biorheology
,
39
, pp.
359
364
.
36.
Quarteroni
,
A.
,
Ragni
,
S.
, and
Veneziani
,
A.
,
2001
, “
Coupling Between Lumped and Distributed Models for Blood Flow Problems
,”
Comput. Visual. Sci.
,
4
, pp.
111
124
.
37.
Rebergen
,
S. A.
,
Ottenkanp
,
J.
,
Doornbos
,
J.
,
van der Wall
,
E. E.
,
Chin
,
J. G. J.
, and
de Roos
,
A.
,
1993
, “
Postoperative Pulmonary Flow Dynamics After Fontan Surgery: Assessment With Nuclear Magnetic Resonance Velocity Mapping
,”
J. Am. Coll. Cardiol.
,
211
, pp.
123
131
.
38.
Fogel
,
M. A.
,
Weinberg
,
P. M.
,
Hoydu
,
A.
,
Hubbard
,
A.
,
Rychik
,
J.
,
Jacobs
,
M.
,
Fellows
,
K. E.
, and
Haselgrove
,
J.
,
1996
, “
The Nature of Flow in the Systemic Venous Pathway Measured by Magnetic Resonance Blood Tagging in Patients Having the Fontan Operation
,”
J. Thorac. Cardiovasc. Surg.
,
114
, pp.
1032
1041
.
39.
Be’eri
,
E.
,
Maier
,
S. E.
,
Landzberg
,
M. J.
,
Chung
,
T.
, and
Geva
,
T.
,
1998
, “
In Vivo Evaluation of Fontan Pathway Flow Dynamics by Multidimensional Phase-Velocity Magnetic Resonance Imaging
,”
Circulation
,
98
, pp.
2873
2882
.
40.
Sharma
,
S.
,
Ensley
,
A. E.
,
Hopkins
,
K.
,
Chatzimavroudis
,
G. P.
,
Healy
,
T. M.
,
Tam
,
V. K.
,
Kanter
,
K. R.
, and
Yoganathan
,
A. P.
,
2001
, “
In Vivo Flow Dynamics of the Total Cavopulmonary Connection From Three-Dimensional Multislice Magnetic Resonance Imaging
,”
Ann. Thorac. Surg.
71
, pp.
889
898
.
41.
Steinman
,
D. A.
,
Thomasm
,
J. B.
,
Ladak
,
H. M.
,
Milner
,
J. S.
,
Rutt
,
B. K.
, and
Spence
,
J. D.
,
2002
, “
Reconstruction of Carotid Bifurcation Hemodynamics and Wall Thickness Using Computational Fluid Dynamics and MRI
,”
Magn. Reson. Med.
,
47
, pp.
149
159
.
42.
Long
,
Q.
,
Xu
,
X. Y.
,
Bourne
,
M.
, and
Griffith
,
T. M.
,
2000
, “
Numerical Study of Blood Flow in an Anatomically Realistic Aorto-Iliac Bifurcation Generated From MRI Data
,”
Magn. Reson. Med.
,
43
, pp.
565
576
.
You do not currently have access to this content.