Fatigue loading of bone, from the activities of daily living in the elderly, or from prolonged exercise in the young, can lead to increased risk of fracture. Elderly patients with osteoporosis are particularly prone to fragility fractures of the vertebrae, where load is carried primarily by trabecular bone. In this study, specimens of bovine trabecular bone were loaded in compressive fatigue at four different normalized stresses to one of six maximum strains. The resulting change in modulus and residual strain accumulation were measured over the life of the fatigue test. The number of cycles to reach a given maximum compressive strain increased with decreasing normalized stress. Modulus reduction and specimen residual strain increased with increasing maximum compressive strain, but few differences were observed between specimens loaded to the same maximum strain at different normalized stresses.

1.
Burr
,
D. B.
,
Forwood
,
M. R.
,
Fyhrie
,
D. P.
,
Martin
,
R. B.
,
Schaffler
,
M. B.
, and
Turner
,
C. H.
,
1997
, “
Bone microdamage and skeletal fragility in osteoporotic and stress fractures
,”
J. Bone Miner. Res.
,
12
(
1
), pp.
6
15
.
2.
Muir
,
P.
,
Johnson
,
K. A.
, and
Ruaux-Mason
,
C. P.
,
1999
, “
In vivo matrix microdamage in a naturally occurring canine fatigue fracture
,”
Bone (N.Y.)
,
25
(
5
), pp.
571
576
.
3.
Schaffler
,
M. B.
,
Choi
,
K.
, and
Milgrom
,
C.
,
1995
, “
Aging and matrix microdamage accumulation in human compact bone
,”
Bone (N.Y.)
,
17
(
6
), pp.
521
525
.
4.
Freeman
,
M. A. R.
,
Todd
,
R. C.
, and
Ririe
,
C. J.
,
1974
, “
The role of fatigue in the pathogenesis of senile femoral neck fractures
,”
J. Bone Jt. Surg.
,
56-B
(
4
), pp.
698
702
.
5.
Daffner
,
R. H.
, and
Pavlov
,
H.
,
1992
, “
Stress fractures: current concepts
,”
AJR, Am. J. Roentgenol.
,
159
(
8
), pp.
245
252
.
6.
Egol
,
K. A.
,
Koval
,
K. J.
,
Kummer
,
F.
, and
Frankel
,
V. H.
,
1998
, “
Stress fractures of the femoral neck
,”
Clin. Orthop.
,
348
, pp.
72
78
.
7.
Mosekilde
,
L.
,
1993
, “
Vertebral structure and strength in vivo and in vitro
,”
Calcif. Tissue Int.
,
53
(Suppl 1), pp.
S121–S126
S121–S126
.
8.
Melton
,
L. J.
,
Kan
,
S. H.
,
Fyre
,
M. A.
,
Wahner
,
H. W.
,
O-Fallon
,
W. M.
, and
Riggs
,
B. L.
,
1989
, “
Epidemiology of vertebral fractures in women
,”
Am. J. Epidemiol.
,
129
(
5
), pp.
1000
1011
.
9.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1976
, “
Fatigue life of compact bone-I. Effects of stress amplitude, temperature and density
,”
J. Biomech.
,
9
, pp.
27
34
.
10.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1977
, “
Compact bone fatigue damage—I. residual strength and stiffness
,”
J. Biomech.
,
10
, pp.
325
337
.
11.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1977
, “
Compact bone fatigue damage: a microscopic examination
,”
Clin. Orthop.
,
127
, pp.
265
274
.
12.
Pattin
,
C. A.
,
Caler
,
W. E.
, and
Carter
,
D. R.
,
1996
, “
Cyclic mechanical property degradation during fatigue loading of cortical bone
,”
J. Biomech.
,
29
(
1
), pp.
69
79
.
13.
Zioupos
,
P.
,
Wang
,
X. T.
, and
Currey
,
J. D.
,
1996
, “
Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler
,”
J. Biomech.
,
29
(
8
), pp.
989
1002
.
14.
Zioupos
,
P.
,
Wang
,
X. T.
, and
Currey
,
J. D.
,
1996
, “
The accumulation of fatigue microdamage in human cortical bone of two different ages in vitro
,”
Clin. Biomech. (Los Angel. Calif.)
,
11
(
7
), pp.
365
375
.
15.
Guo
,
X. E.
,
McMahon
,
T. A.
,
Keaveny
,
T. M.
,
Hayes
,
W. C.
, and
Gibson
,
L. J.
,
1994
, “
Finite element modeling of damage accumulation in trabecular bone under cyclic loading
,”
J. Biomech.
,
27
(
2
), pp.
145
155
.
16.
Cheng, D. W., 1995, “Compressive High Cycle at Low Strain Fatigue Behavior of Bovine Trabecular Bone,” SM thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.
17.
Haddock
,
S. M.
,
Yeh
,
O. C.
,
Mummaneni
,
P. V.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
,
2000
, “
Fatigue behavior of human vertebral trabecular bone
,”
Transactions of the Orthopaedic Research Society
,
25
, pp.
733
733
.
18.
O’Brien, F. J., 2001, “Microcracks and the fatigue behavior of compact bone,” Ph.D. thesis, Trinity College and Royal College of Surgeons in Ireland, Dublin, Ireland.
19.
Caler
,
W. E.
, and
Carter
,
D. R.
,
1989
, “
Bone creep-fatigue damage accumulation
,”
J. Biomech.
,
22
(
6-7
), pp.
625
635
.
20.
Carter
,
D. R.
, and
Caler
,
W. E.
,
1985
, “
A cumulative damage model for bone fracture
,”
J. Orthop. Res.
,
3
(
1
), pp.
84
90
.
21.
Guo, X. E., 1993, “Fatigue of Trabecular Bone,” Ph.D. thesis, Harvard University, Cambridge, Massachusetts.
22.
Bowman
,
S. M.
,
Guo
,
X. E.
,
Cheng
,
D. W.
,
Keaveny
,
T. M.
,
Gibson
,
L. J.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1998
, “
Creep contributes to the fatigue behavior of bovine trabecular bone
,”
J. Biomech. Eng.
,
120
(
5
), pp.
647
654
.
23.
Taylor
,
D.
,
1998
, “
Microcrack growth parameters for compact bone deduced from stiffness variations
,”
J. Biomech.
,
31
, pp.
587
592
.
24.
Schaffner
,
G.
,
Guo
,
X. E.
,
Silva
,
M. J.
, and
Gibson
,
L. J.
,
2000
, “
Modelling fatigue damage accumulation in two-dimensional Voronoi honeycombs
,”
International Journal of Mechanical Sciences
,
42
(
4
), pp.
645
656
.
25.
Makiyama
,
A. M.
,
Vajjala
,
S.
, and
Gibson
,
L. J.
,
2002
, “
Analysis of crack growth in a 3D Voronoi structure: A model for fatigue in low density trabecular bone
,”
J. Biomech. Eng.
,
124
, pp.
512
520
.
26.
Burr
,
D. B.
,
Turner
,
C. H.
,
Naick
,
P.
,
Forwood
,
M. R.
,
Ambrosius
,
W.
,
Hasan
,
M. S.
, and
Pidaparti
,
R.
,
1998
, “
Does microdamage accumulation affect the mechanical properties of bone?
,”
J. Biomech.
,
31
, pp.
337
345
.
27.
Moore, T. L. A., and Gibson, L. J., 2002, “
Fatigue microdamage of bovine trabecular bone,” ASME J. Biomech. Eng. (in this issue
).
28.
Keaveny
,
T. M.
,
Pinilla
,
T. P.
,
Crawford
,
R. P.
,
Kopperdahl
,
D. L.
, and
Lou
,
A.
,
1997
, “
Systematic and random errors in compression testing of trabecular bone
,”
J. Orthop. Res.
,
15
(
1
), pp.
101
110
.
29.
Keaveny
,
T. M.
,
Guo
,
X. E.
,
Wachtel
,
E. F.
,
McMahon
,
T. A.
, and
Hayes
,
W. C.
,
1994
, “
Trabecular bone exhibits fully linear elastic behavior and yields at low strains
,”
J. Biomech.
,
27
(
9
), pp.
1127
1136
.
30.
Lee
,
T. C.
,
Arthur
,
T. L.
,
Gibson
,
L. J.
, and
Hayes
,
W. C.
,
2000
, “
Sequential labelling of microdamage in bone using chelating agents
,”
J. Orthop. Res.
,
18
, pp.
322
325
.
31.
Moore
,
T. L. A.
, and
Gibson
,
L. J.
,
2002
, “
Microdamage accumulation in bovine trabecular bone in uniaxial compression
,”
J. Biomech. Eng.
,
124
(
1
), pp.
63
71
.
32.
Keaveny
,
T. M.
,
Guo
,
X. E.
, and
Wachtel
,
E. F.
,
1993
, “
Trabecular bone is linearly elastic up to yielding and yields by cracking
,”
Transactions of the Orthopaedic Research Society
,
18
, pp.
586
586
.
33.
Seireg
,
A.
, and
Kempke
,
W.
,
1969
, “
Behavior of in vivo bone under cyclic loading
,”
J. Biomech.
,
2
, pp.
455
461
.
34.
Hertzberg, R. W., 1989, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York.
35.
Guo
,
X. E.
,
Gibson
,
L. J.
,
McMahon
,
T. A.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1992
, “
Finite element modeling of fatigue damage accumulation in trabecular bone
,”
Transactions of the Orthopaedic Research Society
,
17
, pp.
164
164
.
36.
Bowman
,
S. M.
,
Gibson
,
L. J.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1999
, “
Results from demineralized bone creep tests suggest that collagen is responsible for the creep behavior of bone
,”
J. Biomech.
,
121
(
2
), pp.
253
258
.
You do not currently have access to this content.