This study presents an analysis of the contact of a rippled rigid impermeable indenter against a cartilage layer, which represents a first simulation of the contact of rough cartilage surfaces with lubricant entrapment. Cartilage was modeled with the biphasic theory for hydrated soft tissues, to account for fluid flow into or out of the lubricant pool. The findings of this study demonstrate that under contact creep, the trapped lubricant pool gets depleted within a time period on the order of seconds or minutes as a result of lubricant flow into the articular cartilage. Prior to depletion, hydrostatic fluid load support across the contact interface may be enhanced by the presence of the trapped lubricant pool, depending on the initial geometry of the lubricant pool. According to friction models based on the biphasic nature of the tissue, this enhancement in fluid load support produces a smaller minimum friction coefficient than would otherwise be predicted without a lubricant pool. The results of this study support the hypothesis that trapped lubricant decreases the initial friction coefficient following load application, independently of squeeze-film lubrication effects.

1.
Ateshian
,
G. A.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Mow
,
V. C.
,
1994
, “
An Asymptotic Solution for Two Contacting Biphasic Cartilage Layer
,”
J. Biomech.
,
27
, pp.
1347
1360
.
2.
Macirowski
,
T.
,
Tepic
,
S.
, and
Mann
,
R. W.
,
1994
, “
Cartilage Stresses in the Human Hip Joint
,”
ASME J. Biomech. Eng.
,
116
, pp.
11
18
.
3.
Ateshian
,
G. A.
, and
Wang
,
H.
,
1995
, “
A Theoretical Solution for the Rolling Contact of Frictionless Cylindrical Biphasic Articular Cartilage Layers
,”
J. Biomech.
,
28
, pp.
1341
1355
.
4.
Kelkar
,
R.
, and
Ateshian
,
G. A.
,
1999
, “
Contact Creep of Biphasic Cartilage Layers: Identical Layers
,”
ASME J. Appl. Mech.
,
66
, pp.
137
145
.
5.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
1998
, “
Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression
,”
J. Biomech.
,
31
, pp.
927
934
.
6.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
Interstitial Fluid Pressurization During Confined Compression Cyclical Loading of Articular Cartilage
,”
Ann. Biomed. Eng.
,
28
, pp.
150
159
.
7.
McCutchen
,
C. W.
,
1959
, “
Sponge-Hydrostatic and Weeping Bearing
,”
Nature (London)
,
184
, p.
1284
1284
.
8.
McCutchen
,
C. W.
,
1962
, “
The Frictional Properties of Animal Joints
,”
Wear
,
5
, pp.
1
17
.
9.
Malcom, L. L., 1976, “An Experimental Investigation of the Frictional and Deformational Responses of Articular Cartilage Interfaces to Static and Dynamic Loading,” Ph.D. Thesis, University of California, San Diego.
10.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
11.
Forster
,
H.
, and
Fisher
,
J.
,
1996
, “
The Influence of Loading Time and Lubricant on the Friction of Articular Cartilage
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
210
, pp.
109
119
.
12.
Ateshian
,
G. A.
,
1997
, “
A Theoretical Formulation for Boundary Friction in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
119
, pp.
81
86
.
13.
Ateshian
,
G. A.
,
Wang
,
H.
, and
Lai
,
W. M.
,
1998
, “
The Role of Interstitial Fluid Pressurization and Surface Porosities on the Boundary Friction of Articular Cartilage
,”
ASME J. Tribol.
,
120
, pp.
241
251
.
14.
Gardner
,
D. L.
,
1972
, “
The Influence of Microscopic Technology on Knowledge of Cartilage Surface Structure
,”
Ann. Rheum. Dis.
,
31
, pp.
235
258
.
15.
Longmore
,
R. B.
, and
Gardner
,
M. J.
,
1975
, “
Development With Age of Human Articular Cartilage Surface Structure
,”
Ann. Rheum. Dis.
,
34
, pp.
26
37
.
16.
Walker
,
P. S.
,
Dowson
,
D.
,
Longfield
,
M. D.
, and
Wright
,
V.
,
1968
, “
‘Boosted Lubrication’ in Synovial Joints by Fluid Entrapment and Enrichment
,”
Ann. Rheum. Dis.
,
27
, pp.
512
520
.
17.
Clarke
,
I. C.
,
1971
, “
Articular Cartilage: A Review and Scanning Electron Microscope Study
,”
J. Bone Jt. Surg., Am. Vol
,
53b
, pp.
67
71
.
18.
Jurvelin
,
J. S.
,
Muller
,
D. J.
,
Wong
,
M.
,
Studer
,
D.
,
Engel
,
A.
, and
Hunziker
,
E. B.
,
1996
, “
Surface and Subsurface Morphology of Bovine Humeral Articular Cartilage as Assessed by Atomic Force and Transmission Electron Microscopy
,”
J. Struct. Biol.
,
117
, pp.
45
54
.
19.
Forster
,
H.
, and
Fisher
,
J.
,
1999
, “
The Influence of Continuous Sliding and Subsequent Surface Wear on the Friction of Articular Cartilage
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
213
, pp.
329
345
.
20.
Gardner
,
D. L.
,
Salter
,
D. M.
, and
Oates
,
K.
,
1997
, “
Advances in the Microscopy of Osteoarthritis
,”
Microsc. Res. Tech.
,
37
, pp.
245
270
.
21.
Moa-Anderson, B. J., Costa, K. D., Hung, C. T., and Ateshian, G. A., 2003, “Bovine Articular Cartilage Surface Topography and Roughness in Fresh Versus Frozen Tissue Samples Using Atomic Force Microscopy,” Proceedings of the 2003 Summer Bioengineering Conference (in review).
22.
Walker
,
P. S.
,
Unsworth
,
A.
,
Dowson
,
D.
,
Sikorski
J.
, and
Wright
,
V.
,
1970
, “
Mode of Aggregation of Hyaluronic Acid Protein Complex on the Surface of Articular Cartilage
,”
Ann. Rheum. Dis.
,
29
, pp.
591
602
.
23.
Dowson
,
D.
,
Unsworth
,
A.
, and
Wright
,
V.
,
1970
, “
Analysis of ‘Boosted Lubrication’ in Human Joints
,”
J. Mech. Eng. Sci.
,
12
, pp.
364
369
.
24.
Longfield
,
M. D.
,
Dowson
,
D.
,
Walker
,
P. S.
, and
Wright
,
V.
,
1969
, “
‘Boosted Lubrication’ of Human Joints by Fluid Enrichment and Entrapment
,”
Biomed. Eng.
,
4
, pp.
517
522
.
25.
Maroudas
,
A.
,
1967
, “
Hyaluronic Acid Films
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
181
, pp.
122
124
.
26.
Dowson
,
D.
, and
Jin
,
Z. M.
,
1992
, “
A Full Numerical Solution to the Problem of Microelastohydrodynamic Lubrication of a Stationary Compliant Wavy Layered Surface Firmly Bonded to a Rigid Substrate With Particular Reference to Human Synovial Joints
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
206
, pp.
185
193
.
27.
Hou
,
J. S.
,
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1989
, “
Boundary Conditions at the Cartilage-Synovial Fluid Interface for Joint Lubrication and Theoretical Verifications
,”
J. Biomech. Eng.
,
111
, pp.
78
87
.
28.
Hou
,
J. S.
,
Mow
,
V. C.
,
Lai
,
W. M.
, and
Holmes
,
M. H.
,
1992
, “
Squeeze-Film Lubrication for Articular Cartilage With Synovial Fluid
,”
J. Biomech.
,
25
, pp.
247
259
.
29.
Jin
,
Z. M.
,
Dowson
,
D.
, and
Fisher
,
J.
,
1992
, “
The Effect of Porosity of Articular Cartilage on the Lubrication of a Normal Human Hip Joint
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
206
, pp.
117
124
.
30.
Hlava´cek
,
M.
,
1993
, “
The Role of Synovial Fluid Filtration by Cartilage in Lubrication of Synovial Joints II. Squeeze-Film Lubrication: Homogeneous Filtration
,”
J. Biomech.
,
26
, pp.
1151
1160
.
31.
Hlava´cek
,
M.
,
2000
, “
Squeeze-Film Lubrication of the Human Ankle Joint With Synovial Fluid Filtrated by Articular Cartilage With the Superficial Zone Worn Out
,”
J. Biomech.
,
33
, pp.
1415
1422
.
32.
Hlava´cek
,
M.
,
2002
, “
The Influence of the Acetabular Labrum Seal, Intact Articular Superficial Zone and Synovial Fluid Thixotropy on Squeeze-Film, Lubrication of a Spherical Synovial Joint
,”
J. Biomech.
,
35
, pp.
1325
1335
.
33.
Kuznetsov
,
Y. A.
,
1985
, “
Effects of Fluid Lubricant on the Contact Characteristics of Rough Elastic Bodies in Compression
,”
Wear
,
102
, pp.
177
194
.
34.
Avitzur
,
B.
,
1989
, “
Effect of Surface Irregularities, Substrate Surface Layers, Pressure, Lubrication and Sliding Speed on Friction Resistance to Sliding Metals
,”
Key Eng. Mater.
,
33
, pp.
1
16
.
35.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
J. A.
,
Malinin
,
T. I.
, and
Mow
,
V. C.
,
1991
, “
Interspecies Comparison of In Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
J. Orthop. Res.
,
9
, pp.
330
340
.
36.
Soltz
,
M. A.
,
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2001
, “
Osmotic Pressure Influence on the Frictional Response of Articular Cartilage
,”
Trans. Orthop. Res. Soc.
,
26
, p.
60
60
.
37.
Ateshian, G. A., Soltz, M. A., Mauck, R. L., Hung, C. T., and Lai, W. M., “The Role of Osmotic Pressure and Tension Compression Nonlinearity in the Frictional Response of Articular Cartilage,” Transport in Porous Media, 50, pp. 5-33.
38.
Hlava´cek
,
M.
,
1999
, “
Lubrication of the Human Ankle Joint in Walking With the Synovial Fluid Filtrated by the Cartilage With the Surface Zone Worn Out: Steady Pure Sliding Motion
,”
J. Biomech.
,
32
, pp.
1059
1069
.
39.
Ateshian, G. A., and Wang, X., 2000, “Boundary Conditions at the Viscous Sliding Interface of Incompressible Porous Deformable Media,” In: Multifield Problems, State of the Art, A.-M. Sa¨ndig, W. Schiehlen, and W. Wendland (eds), Springer-Verlag, Berlin, pp. 115–124.
40.
Swann
,
D. A.
,
Silver
,
F. H.
,
Slayter
,
H. S.
,
Stafford
,
W.
, and
Showe
,
E.
,
1985
, “
The Molecular Structure and Lubricating Activity of Lubricin From Bovine and Human Synovial Fluids
,”
Biochem. J.
,
225
,
195
201
.
41.
Hills
,
B. A.
,
2000
, “
Boundary Lubrication In Vivo
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
214
, pp.
83
94
.
You do not currently have access to this content.