Inflation and extension tests of arteries are essential for the understanding of arterial wall mechanics. Data for such tests of human arteries are rare. At autopsy we harvested 10 non-diseased external iliac arteries of aged subjects (52–87 yrs). Structural homogeneity was ensured by means of ultrasound imaging, and anamneses of patients were recorded. We measured the axial in situ stretches, load-free geometries and opening angles. Passive biaxial mechanical responses of preconditioned cylindrical specimens were studied in 37°C calcium-free Tyrode solution under quasistatic loading conditions. Specimens were subjected to pressure cycles varying from 0 to 33.3kPa (250mmHg) at nine fixed axial loads, varying from 0 to 9.90N. For the description of the load-deformation behavior we employed five “two-dimensional” orthotropic strain-energy functions frequently used in arterial wall mechanics. The associated constitutive models were compared in regard to their ability of representing the experimental data. Histology showed that the arteries were of the muscular type. In contrast to animal arteries they exhibited intimal layers of considerable thickness. The average ratio of wall thickness to outer diameter was 7.7, which is much less than observed for common animal arteries. We found a clear correlation between age and the axial in situ stretch λis(r=0.72,P=0.03), and between age and distensibility of specimens, i.e. aged specimens are less distensible. Axial in situ stretches were clearly smaller (1.07±0.09,mean±SD) than in animal arteries. For one specimen λis was even smaller than 1.0, i.e. the vessel elongated axially upon excision. The nonlinear and anisotropic load-deformation behavior showed small hystereses. For the majority of specimens we observed axial stretches smaller than 1.3 and circumferential stretches smaller than 1.1 for the investigated loading range. Data from in situ inflation tests showed a significant increase of the axial stretch with intraluminal pressure. Thus, for this type of artery the axial in situ stretch of a non-pressurized vessel is not representative of the axial in vivo stretch. None of the constitutive models were able to represent the deformation behavior of the entire loading range. For the physiological loading range, however, some of the models achieved good agreement with the experimental data.

1.
Holzapfel, G. A., 2000, Nonlinear Solid Mechanics, A Continuum Approach for Engineering, John Wiley and Sons, Chichester.
2.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
, pp.
1
48
.
3.
Gasser
,
T. C.
,
Schulze-Bauer
,
C. A. J.
, and
Holzapfel
,
G. A.
,
2002
, “
A Three-dimensional Finite Element Model for Arterial Clamping
,”
J. Biomech. Eng.
,
124
, pp.
355
363
.
4.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Schulze-Bauer
,
C. A. J.
,
2002
, “
A Layer-Specific 3D-Model for the Finite Element Simulation of Balloon Angioplasty using MR Imaging and Mechanical Testing
,”
Ann. Biomed. Eng.
,
30
, pp.
753
767
.
5.
The
,
S. H.
,
Gussenhoven
,
E. J.
,
Pieterman
,
H.
,
van Bortel
,
L. M.
,
Li
,
W.
,
Roelandt
,
J. R.
,
de Feyter
,
P.
, and
Van Urk
,
H.
,
1995
, “
Assessment of Regional Vascular Distensibility in Diseased Iliofemoral Arteries by Intravascular Ultrasound
,”
Ultrasound Med. Biol.
,
21
, pp.
17
24
.
6.
The
,
S. H.
,
Gussenhoven
,
E. J.
,
Wenguang
,
L.
,
de Feyter
,
P.
,
Serruys
,
P. W.
,
Wilson
,
R. A.
, and
Bom
,
K.
,
1992
, “
Intravascular Ultrasonic Assessment of Lumen Geometry and Distensibility of the Angiographically Normal Artery: A Correlation with Quantitative Angiography
,”
Echocardiography
,
9
, pp.
133
139
.
7.
Hayashi
,
K.
,
1993
, “
Experimental Approaches on Measuring the Mechanical Properties and Constitutive Laws of Arterial Walls
,”
J. Biomech. Eng.
,
115
, pp.
481
488
.
8.
Learoyd
,
B. M.
, and
Taylor
,
M. G.
,
1966
, “
Alterations with Age in the Viscoelastic Properties of Human Arterial Walls
,”
Circ. Res.
,
18
, pp.
278
292
.
9.
Medynsky
,
A. O.
,
Holdsworth
,
D. W.
,
Sherebrin
,
M. H.
,
Rankin
,
R. N.
, and
Roach
,
M. R.
,
1998
, “
Elastic Response of Human Iliac Arteries In-vitro to Balloon Angioplasty Using High-resolution CT
,”
J. Biomech.
,
31
, pp.
747
751
.
10.
Roach
,
M. R.
, and
Burton
,
A. C.
,
1957
, “
The Reason for the Shape of the Distensibility Curve of Arteries
,”
Can. J. Biochem. Physiol.
,
35
, pp.
681
690
.
11.
Papageorgiou
,
G. L.
, and
Jones
,
N. B.
,
1988
, “
Circumferential and Longitudinal Viscoelasticity of Human Iliac Arterial Segments In Vitro
,”
J. Biomed. Eng.
,
10
, pp.
82
90
.
12.
Carmines
,
D. V.
,
McElhaney
,
J. H.
, and
Stack
,
R.
,
1991
, “
A Piece-wise Non-linear Elastic Stress Expression of Human and Pig Coronary Arteries Tested In Vitro
,”
J. Biomech.
,
24
, pp.
899
906
.
13.
Stary
,
H. C.
,
Blankenhorn
,
D. H.
,
Chandler
,
A. B.
,
Glagov
,
S.
,
Insull
,
W.
Jr.,
Richardson
,
M.
,
Rosenfeld
,
M. E.
,
Schaffer
,
S. A.
,
Schwartz
,
C. J.
,
Wagner
,
W. D.
, and
Wissler
,
R. W.
,
1992
, “
A Definition of the Intima of Human Arteries and of Its Atherosclerosis-prone Regions. A Report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association
,”
Circulation
,
85
, pp.
391
405
.
14.
Fronek
,
K.
,
Schmid-Schoenbein
,
G.
, and
Fung
,
Y. C.
,
1976
, “
A Noncontact Method for Three-dimensional Analysis of Vascular Elasticity In Vivo and In Vitro
,”
J. Appl. Physiol.
,
40
, pp.
634
637
.
15.
Humphrey
,
J. D.
,
Kang
,
T.
,
Sakarda
,
P.
, and
Anjanappa
,
M.
,
1993
, “
Computer-aided Vascular Experimentation: A New Electromechanical Test System
,”
Ann. Biomed. Eng.
,
21
, pp.
33
43
.
16.
Yin
,
F. C.
,
Tompkins
,
W. R.
,
Peterson
,
K. L.
, and
Intaglietta
,
M.
,
1972
, “
A Video Dimension Analyzer
,”
IEEE Trans. Biomed. Eng.
,
19
, pp.
376
381
.
17.
Liu
,
S. Q.
, and
Fung
,
Y. C.
,
1988
, “
Zero-stress States of Arteries
,”
J. Biomech. Eng.
,
110
, pp.
82
84
.
18.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
,
1979
, “
Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression
,”
Am. J. Physiol.
,
237
, pp.
620
631
.
19.
Vaishnav
,
R. N.
,
Young
,
J. T.
,
Janicki
,
J. S.
, and
Patel
,
D. J.
,
1972
, “
Nonlinear Anisotropic Elastic Properties of the Canine Aorta
,”
Biophys. J.
,
12
, pp.
1008
1027
.
20.
Takamizawa
,
K.
, and
Hayashi
,
K.
,
1987
, “
Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics
,”
J. Biomech.
,
20
, pp.
7
17
.
21.
Demiray
,
H.
,
Weizsa¨cker
,
H. W.
, and
Pascale
,
K.
,
1986
, “
A Mechanical Model for Passive Behavior of Rats’ Carotid Artery
,”
Biomed. Tech.
,
31
, pp.
46
52
.
22.
Fung
,
Y. C.
,
Liu
,
S. Q.
, and
Zhou
,
J. B.
,
1993
, “
Remodeling of the Constitutive Equation While a Blood Vessel Remodels Itself Under Stress
,”
J. Biomech. Eng.
,
115
, pp.
453
459
.
23.
Holzapfel
,
G. A.
,
Eberlein
,
R.
,
Wriggers
,
P.
, and
Weizsa¨cker
,
H. W.
,
1996
, “
A New Axisymmetrical Membrane Element for Anisotropic, Finite Strain Analysis of Arteries
,”
Commun. Numer. Methods Eng.
,
12
, pp.
507
517
.
24.
Hickler
,
R. B.
,
1990
, “
Aortic and Large Artery Stiffness: Current Methodology and Clinical Correlations
,”
Clin. Cardiol.
,
13
, pp.
317
322
.
25.
Saini
,
A.
,
Berry
,
C.
, and
Greenwald
,
S.
,
1995
, “
Effect of Age and Sex on Residual Stress in the Aorta
,”
J. Vasc. Res.
,
32
, pp.
398
405
.
26.
Nichols, W. W., and O’Rourke, M. F., 1998, McDonald’s Blood Flow in Arteries Theoretical, Experimental and Clinical Principles, 4th edition, Arnold, London.
27.
Cox
,
R. H.
,
1979
, “
Arterial Wall Properties and Dietary Atherosclerosis in the Racing Greyhound
,”
Am. J. Physiol.
,
236
, pp.
790
797
.
28.
Dobrin
,
P. B.
,
Schwarcz
,
T. H.
, and
Mrkvicka
,
R.
,
1990
, “
Longitudinal Retractive Force in Pressurized Dog and Human Arteries
,”
J. Surg. Res.
,
48
, pp.
116
120
.
29.
Humphrey, J. D., 2002, “Cardiovascular Solid Mechanics. Cells, Tissues, and Organs,” Springer-Verlag, New York.
30.
van Loon
,
P.
,
Klip
,
W.
, and
Bradley
,
E. L.
,
1977
, “
Length-force and Volume-pressure Relationships in Arteries
,”
Biorheology
,
14
, pp.
181
201
.
31.
Weizsa¨cker
,
H. W.
,
Lambert
,
H.
, and
Pascale
,
K.
,
1983
, “
Analysis of the Passive Mechanical Properties of Rat Carotid Arteries
,”
J. Biomech.
,
16
, pp.
703
715
.
32.
Langewouters
,
G. J.
,
Wesseling
,
K. H.
, and
Goedhard
,
W. J.
,
1984
, “
The Static Elastic Properties of 45 Human Thoracic and 20 Abdominal Aortas In Vitro and the Parameters of a New Model
,”
J. Biomech.
,
17
, pp.
425
435
.
33.
Yin
,
F. C.
,
Chew
,
P. H.
, and
Zeger
,
S. L.
,
1986
, “
An Approach to Quantification of Biaxial Tissue Stress-strain Data
,”
J. Biomech.
,
19
, pp.
27
37
.
34.
Holzapfel, G. A., Schulze-Bauer, C., and Stadler, M., 2000, “Mechanics of Angioplasty: Wall, Balloon and Stent,” Proceedings, in ‘Mechanics in Biology,’ J. Casey and G. Bao, eds., ASME, New York, AMD-Vol. 242/BED-Vol. 46, pp. 141–156.
35.
Schulze-Bauer
,
C. A. J.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2002
, “
Mechanics of the Human Femoral Adventitia Including High-Pressure Response
,”
Am. J. Physiol. Heart Circ. Physiol.
,
282
, pp.
2427
2440
.
36.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1983
, “
Three-dimensional Stress Distribution in Arteries
,”
J. Biomech. Eng.
,
105
, pp.
268
274
.
37.
Takamizawa
,
K.
, and
Hayashi
,
K.
,
1988
, “
Uniform Strain Hypothesis and Thin-walled Theory in Arterial Mechanics
,”
Biorheology
,
25
, pp.
555
565
.
You do not currently have access to this content.