Various graft materials have been used in posterior cruciate ligament (PCL) reconstruction. However, it is unclear if these grafts can reproduce the structural behavior of the PCL. This paper analyzed the effect of graft length on the structural behavior of the graft using a minimal deformation energy method. An analytical solution was obtained to determine the optimal effective graft length that can best reproduce the structural behavior of the PCL. This optimal graft length was determined as a function of the axial rigidity of the graft. Two typical grafts, bone-patella tendon-bone (BPTB) and Achilles tendon, were analyzed. The data demonstrated that in order to reproduce the PCL behavior, the effective length of a BPTB graft (10 mm width) should be 34 mm, while the Achilles tendon graft (with a cross sectional area of 55 mm2) needs to be 48 mm in length. Longer grafts result in less resistance and shorter graft increased the graft resistance. An initial graft tension cannot help recreate the overall structural behavior of the PCL. These results suggest that graft length is an important surgical variable in PCL reconstruction. An optimal reconstruction of the PCL should reproduce the structural properties of the PCL by using a graft with an optimal length.

1.
Markolf
,
K. L.
,
Slauterbeck
,
J. R.
,
Armstrong
,
K. L.
,
Shapiro
,
M. S.
, and
Finerman
,
G. A.
,
1997
, “
A Biomechanical Study of Replacement of the Posterior Cruciate Ligament with a Graft. Part 1: Isometry, Pre-tension of the Graft, and Anterior-posterior Laxity
,”
J. Bone Jt. Surg., Am. Vol.
,
79
(
3
), pp.
375
380
.
2.
Harner
,
C. D.
,
Janaushek
,
M. A.
,
Kanamori
,
A.
,
Yagi
,
M.
,
Vogrin
,
T. M.
, and
Woo
,
S. L.
,
2000
, “
Biomechanical Analysis of a Double-bundle Posterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
28
(
2
), pp.
144
151
.
3.
Harner
,
C. D.
,
Vogrin
,
T. M.
,
Hoher
,
J.
,
Ma
,
C. B.
, and
Woo
,
S. L.
,
2000
, “
Biomechanical Analysis of a Posterior Cruciate Ligament Reconstruction. Deficiency of the Posterolateral Structures as a Cause of Graft Failure
,”
Am. J. Sports Med.
,
28
(
1
), pp.
32
39
.
4.
Bergfeld
,
J. A.
,
McAllister
,
D. R.
,
Parker
,
R. D.
,
Valdevit
,
A. D.
, and
Kambic
,
H. E.
,
2001
, “
A Biomechanical Comparison of Posterior Cruciate Ligament Reconstruction Techniques
,”
Am. J. Sports Med.
,
29
(
2
), pp.
129
136
.
5.
Mannor
,
D. A.
,
Shearn
,
J. T.
,
Grood
,
E. S.
,
Noyes
,
F. R.
, and
Levy
,
M. S.
,
2000
, “
Two-bundle Posterior Cruciate Ligament Reconstruction. An In Vitro Analysis of Graft Placement and Tension
,”
Am. J. Sports Med.
,
28
(
6
), pp.
833
845
.
6.
Lipscomb
, Jr.,
A. B.
,
Anderson
,
A. F.
,
Norwig
,
E. D.
,
Hovis
,
W. D.
, and
Brown
,
D. L.
,
1993
, “
Isolated Posterior Cruciate Ligament Reconstruction, Long-term Results
,”
Am. J. Sports Med.
,
21
(
4
), pp.
490
496
.
7.
Becker
,
R.
,
Ropke
,
M.
, and
Nebelung
,
W.
,
1999
, “
Clinical Outcome of Arthroscopic Posterior Cruciate Ligament-plasty
,”
Unfallchirurg
,
102
(
5
), pp.
354
358
.
8.
Gill, T. J., DeFrate, L. E., Li, G., Carey, C. T., Zayontz, S. J., Glatt, V., and Zarins, B., The Effect of PCL Reconstruction on the Kinematics of the Knee Under Simulated Muscle Loads, in Orthopaedic Research Society 48th Annual Meeting (Dallas Texas, 2002).
9.
Buckwalter
,
J. A.
, and
Lane
,
N. E.
,
1997
, “
Athletics and Osteoarthritis
,”
Am. J. Sports Med.
,
25
(
6
), pp.
873
881
.
10.
Cooper
,
D. E.
,
Deng
,
X. H.
,
Burstein
,
A. L.
, and
Warren
,
R. F.
,
1993
, “
The Strength of the Central Third Patellar Tendon Graft. A Biomechanical Study
,”
Am. J. Sports Med.
,
21
(
6
), pp.
818
823
; discussion 823–814.
11.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1991
, “
Articular Contact in a Three-dimensional Model of the Knee
,”
J. Biomech.
,
24
(
11
), pp.
1019
1031
.
12.
Butler
,
D. L.
,
Kay
,
M. D.
, and
Stouffer
,
D. C.
,
1986
, “
Comparison of Material Properties in Fascicle-bone Units From Human Patellar Tendon and Knee Ligaments
,”
J. Biomech.
,
19
(
6
), pp.
425
432
.
13.
Harner
,
C. D.
,
Xerogeanes
,
J. W.
,
Livesay
,
G. A.
,
Carlin
,
G. J.
,
Smith
,
B. A.
,
Kusayama
,
T.
,
Kashiwaguchi
,
S.
, and
Woo
,
S. L.
,
1995
, “
The Human Posterior Cruciate Ligament Complex: An Interdisciplinary Study. Ligament Morphology and Biomechanical Evaluation
,”
Am. J. Sports Med.
,
23
(
6
), pp.
736
745
.
14.
Wren
,
T. A.
,
Yerby
,
S. A.
,
Beaupre
,
G. S.
, and
Carter
,
D. R.
,
2001
, “
Mechanical Properties of the Human Achilles Tendon
,”
Clin. Biomech. (Los Angel. Calif.)
,
16
(
3
), pp.
245
251
.
15.
Noyes
,
F. R.
,
Butler
,
D. L.
,
Grood
,
E. S.
,
Zernicke
,
R. F.
, and
Hefzy
,
M. S.
,
1984
, “
Biomechanical Analysis of Human Ligament Grafts Used in Knee-ligament Repairs and Reconstructions
,”
J. Bone Jt. Surg., Am. Vol.
,
66
(
3
), pp.
344
352
.
16.
Wismans
,
J.
,
Veldpaus
,
F.
,
Janssen
,
J.
,
Huson
,
A.
, and
Struben
,
P.
,
1980
, “
A Three-dimensional Mathematical Model of the Knee-joint
,”
J. Biomech.
,
13
(
8
), pp.
677
685
.
17.
Hamner
,
D. L.
,
Brown
, Jr.,
C. H.
,
Steiner
,
M. E.
,
Hecker
,
A. T.
, and
Hayes
,
W. C.
,
1999
, “
Hamstring Tendon Grafts for Reconstruction of the Anterior Cruciate Ligament: Biomechanical Evaluation of the Use of Multiple Strands and Tensioning Techniques
,”
J. Bone Jt. Surg., Am. Vol.
,
81
(
4
), pp.
549
557
.
18.
Woo
,
S. L.
,
Hollis
,
J. M.
,
Adams
,
D. J.
,
Lyon
,
R. M.
, and
Takai
,
S.
,
1991
, “
Tensile Properties of the Human Femur-anterior Cruciate Ligament-tibia Complex. The Effects of Specimen Age and Orientation
,”
Am. J. Sports Med.
,
19
(
3
), pp.
217
225
.
19.
Beynnon
,
B. D.
,
Risberg
,
M. A.
,
Tjomsland
,
O.
,
Ekeland
,
A.
,
Fleming
,
B. C.
,
Peura
,
G. D.
, and
Johnson
,
R. J.
,
1997
, “
Evaluation of Knee Joint Laxity and the Structural Properties of the Anterior Cruciate Ligament Graft in the Human. A Case Report
,”
Am. J. Sports Med.
,
25
(
2
), pp.
203
206
.
20.
Li
,
G.
,
Lopez
,
O.
, and
Rubash
,
H.
,
2001
, “
Variability of a Three-dimensional Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis
,”
J. Biomech. Eng.
,
123
(
4
), pp.
341
346
.
21.
Brand
, Jr.,
J. C.
,
Pienkowski
,
D.
,
Steenlage
,
E.
,
Hamilton
,
D.
,
Johnson
,
D. L.
, and
Caborn
,
D. N.
,
2000
, “
Interference Screw Fixation Strength of a Quadrupled Hamstring Tendon Graft is Directly Related to Bone Mineral Density and Insertion Torque
,”
Am. J. Sports Med.
,
28
(
5
), pp.
705
710
.
22.
Rowden
,
N. J.
,
Sher
,
D.
,
Rogers
,
G. J.
, and
Schindhelm
,
K.
,
1997
, “
Anterior Cruciate Ligament Graft Fixation. Initial Comparison of Patellar Tendon and Semitendinosus Autografts in Young Fresh Cadavers
,”
Am. J. Sports Med.
,
25
(
4
), pp.
472
478
.
23.
Harner
,
C. D.
,
Janaushek
,
M. A.
,
Ma
,
C. B.
,
Kanamori
,
A.
,
Vogrin
,
T. M.
, and
Woo
,
S. L.
,
2000
, “
The Effect of Knee Flexion Angle and Application of an Anterior Tibial Load at the Time of Graft Fixation on the Biomechanics of a Posterior Cruciate Ligament-Reconstructed Knee
,”
Am. J. Sports Med.
,
28
(
4
), pp.
460
465
.
24.
Clancy
, Jr.,
W. G.
, and
Bisson
,
L. J.
,
1999
, “
Double Tunnel Technique for Reconstruction of the Posterior Cruciate Ligament
,”
Oper Tech in Sports Med
,
7
(
3
), pp.
110
117
.
25.
Race
,
A.
, and
Amis
,
A. A.
,
1998
, “
PCL Reconstruction. In Vitro Biomechanical Comparison of ‘Isometric’ Versus Single and Double-bundled ‘Anatomic’ Grafts
,”
J. Bone Joint Surg. Br.
,
80
(
1
), pp.
173
179
.
26.
Ogata
,
K.
, and
McCarthy
,
J. A.
,
1992
, “
Measurements of Length and Tension Patterns During Reconstruction of the Posterior Cruciate Ligament
,”
Am. J. Sports Med.
,
20
(
3
), pp.
351
355
.
27.
Pearsall
,
A. W.
,
Pyevich
,
M.
,
Draganich
,
L. F.
,
Larkin
,
J. J.
, and
Reider
,
B.
,
1996
, “
In vitro Study of Knee Stability After Posterior Cruciate Ligament Reconstruction
,”
Clin Orthop
,
327
, pp.
264
271
.
28.
Galloway
,
M. T.
,
Grood
,
E. S.
,
Mehalik
,
J. N.
,
Levy
,
M.
,
Saddler
,
S. C.
, and
Noyes
,
F. R.
,
1996
, “
Posterior Cruciate Ligament Reconstruction. An In Vitro Study of Femoral and Tibial Graft Placement
,”
Am. J. Sports Med.
,
24
(
4
), pp.
437
445
.
29.
Burns
,
W. C.
, 2nd,
Draganich
,
L. F.
,
Pyevich
,
M.
, and
Reider
,
B.
,
1995
, “
The Effect of Femoral Tunnel Position and Graft Tensioning Technique on Posterior Laxity of the Posterior Cruciate Ligament-reconstructed Knee
,”
Am. J. Sports Med.
,
23
(
4
), pp.
424
430
.
30.
Ishibashi
,
Y.
,
Rudy
,
T. W.
,
Livesay
,
G. A.
,
Stone
,
J. D.
,
Fu
,
F. H.
, and
Woo
,
S. L.
,
1997
, “
The Effect of Anterior Cruciate Ligament Graft Fixation Site at the Tibia on Knee Stability: Evaluation Using a Robotic Testing System
,”
Arthroscopy
,
13
(
2
), pp.
177
182
.
31.
Lewis
,
J. L.
,
Lew
,
W. D.
,
Engebretsen
,
L.
,
Hunter
,
R. E.
, and
Kowalczyk
,
C.
,
1990
, “
Factors Affecting Graft Force in Surgical Reconstruction of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
8
(
4
), pp.
514
521
.
32.
Harner
,
C. D.
,
Hoher
,
J.
,
Vogrin
,
T. M.
,
Carlin
,
G. J.
, and
Woo
,
S. L.
,
1998
, “
The Effects of a Popliteus Muscle Load on In Situ Forces in the Posterior Cruciate Ligament and on Knee Kinematics. A Human Cadaveric Study
,”
Am. J. Sports Med.
,
26
(
5
), pp.
669
673
.
33.
Markolf
,
K. L.
,
Slauterbeck
,
J. L.
,
Armstrong
,
K. L.
,
Shapiro
,
M. M.
, and
Finerman
,
G. A.
,
1996
, “
Effects of Combined Knee Loadings on Posterior Cruciate Ligament Force Generation
,”
J. Orthop. Res.
,
14
(
4
), pp.
633
638
.
You do not currently have access to this content.