Structural constitutive models integrate information on tissue composition and structure, avoiding ambiguities in material characterization. However, critical structural information (such as fiber orientation) must be modeled using assumed statistical distributions, with the distribution parameters estimated from fits to the mechanical test data. Thus, full realization of structural approaches continues to be limited without direct quantitative structural information for direct implementation or to validate model predictions. In the present study, fiber orientation information obtained using small angle light scattering (SALS) was directly incorporated into a structural constitutive model based on work by Lanir (J. Biomech., v.16, pp. 1–12, 1983). Demonstration of the model was performed using existing biaxial mechanical and fiber orientation data for native bovine pericardium (Sacks and Chuong, ABME, v.26, pp. 892–902, 1998). The structural constitutive model accurately predicted the complete measured biaxial mechanical response. An important aspect of this approach is that only a single equibiaxial test to determine the effective fiber stress-strain response and the SALS-derived fiber orientation distribution were required to determine the complete planar biaxial mechanical response. Changes in collagen fiber crimp under equibiaxial strain suggest that, at the meso-scale, fiber deformations follow the global tissue strains. This result supports the assumption of affine strain to estimate the fiber strains. However, future evaluations will have to be performed for tissue subjected to a wider range of strain to more fully validate the current approach.

1.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. Springer Verlag, New York, p. 568.
2.
Woo, S. L. Y., and Seguchi, Y., 1989, Tissue Engineering—1989, BED ed. Vol. 14. New York, ASME p. 146.
3.
Nerem
,
R. M.
,
1992
, “
Tissue Engineering in the USA. Medical and Biological Engineering and Computing
,”
Med. Biol. Eng. Comput.
,
30
, pp.
ce8–cd12
ce8–cd12
.
4.
Butler
,
D. L.
,
Goldstein
,
S.
, and
Guilak
,
F.
,
2000
, “
Functional Tissue Engineering: The Role of Biomechanics
,”
J. Biomech. Eng.
,
122
, pp.
570
575
.
5.
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Evaluation of Planar Biological Materials
,”
J. Elast.
,
61
, pp.
199
246
.
6.
Chew
,
P. H.
,
Yin
,
F. C.
, and
Zeger
,
S. L.
,
1986
, “
Biaxial Stress-strain Properties of Canine Pericardium
,”
J. Mol. Cell. Cardiol.
,
18
(
6
), pp.
567
78
.
7.
Yin
,
F. C. P.
,
Chew
,
P. H.
, and
Zeger
,
S. L.
,
1986
, “
An Approach to Quantification of Biaxial Tissue Stress-Strain Data
,”
J. Biomech.
,
19
, pp.
27
37
.
8.
Choi
,
H. S.
, and
Vito
,
R. P.
,
1990
, “
Two-Dimensional Stress-strain Relationship for Canine Pericardium
,”
J. Biomech. Eng.
,
112
(
2
), pp.
153
159
.
9.
Sacks
,
M. S.
,
1999
, “
A Method for Planar Biaxial Mechanical Testing that Includes In-plane Shear
,”
J. Biomech. Eng.
,
121
(
5
), pp.
551
555
.
10.
Sacks
,
M. S.
, and
Chuong
,
C. J.
,
1998
, “
Orthotropic mechanical Properties of Chemically Treated Bovine Pericardium
,”
Ann. Biomed. Eng.
,
26
(
5
), pp.
892
902
.
11.
Sacks
,
M. S.
,
Chuong
,
C. J.
, and
More
,
R.
,
1994
, “
Collagen Fiber Architecture of Bovine Pericardium
,”
ASAIO J.
,
40
, pp.
632
637
.
12.
Mijailovich
,
S. M.
,
Stamenovic
,
D.
, and
Fredberg
,
J. J.
,
1993
, “
Toward a Kinetic Theory of Connective Tissue Micromechanics
,”
J. Appl. Physiol.
,
74
(
2
), pp.
665
681
.
13.
Comninou
,
M.
, and
Yannas
,
I. V.
,
1976
, “
Dependence of Stress Strain Nonlinearity of Connective Tissues on the Geometry of Collagen Fibers
,”
J. Biomech.
,
9
, pp.
427
433
.
14.
Buckley, C. P., Lloyd, D. W., and Konopasek, M., 1980, “On the Deformation of Slender Filaments with Planar Crimp: Theory, Numerical Solution and Applications to Tendon Collagen and Textile Materials,” Proceedings of the Royal Society of London, A 372, pp. 33–64.
15.
Farquhar
,
T.
,
Dawson
,
P. R.
, and
Torzilli
,
P. A.
,
1990
, “
A Microstructural Model for the anisotropic Drained Stiffness of Articular Cartilage
,”
J. Biomech. Eng.
,
112
(
4
), pp.
414
425
.
16.
Horowitz
,
A.
,
Lanir
,
Y.
,
Yin
,
F. C. P.
,
Perl
,
M.
,
Sheinman
,
I.
, and
Strumpf
,
R. K.
,
1988
, “
Structural Three Dimensional Constitutive Law for the Passive Myocardium
,”
J. Biomech. Eng.
,
110
, pp.
200
207
.
17.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of Fresh and Glutaraldehyde Treated Porcine Aortic Valve Cusps: Part II—A Structurally Guided Constitutive Model
,”
J. Biomech. Eng.
,
122
(
4
), pp.
327
335
.
18.
Belkoff
,
S. M.
, and
Haut
,
R. C.
,
1991
, “
A Structural Model used to Evaluate the Changing Microstructure of Maturing Rat Skin
,”
J. Biomech.
,
24
(
8
), pp.
711
720
.
19.
Lanir
,
Y.
,
1983
, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
, pp.
1
12
.
20.
Lanir
,
Y.
,
1979
, “
A Structural Theory for the Homogeneous Biaxial Stress-Strain Relationships in Flat Collageneous Tissues
,”
J. Biomech.
,
12
, pp.
423
436
.
21.
Lanir
,
Y.
,
Lichtenstein
,
O.
, and
Imanuel
,
O.
,
1996
, “
Optimal Design of Biaxial Tests for Structural Material Characterization of Flat Tissues
,”
J. Biomech.
,
118
, pp.
41
47
.
22.
Zioupos
,
P.
, and
Barbenel
,
J. C.
,
1994
, “
Mechanics of Native Bovine Pericardium: I. The Multiangular Behavior of Strength and Stiffness of the Tissue
,”
Biomaterials
,
15
, pp.
366
373
.
23.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
,
1997
, “
A Small Angle Light Scattering Device for Planar Connective Tissue Microstructural Analysis
,”
Ann. Biomed. Eng.
,
25
(
4
), pp.
678
689
.
24.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
1997
, “
A Method to Quantify the Fiber Kinematics of Planar Tissues Under Biaxial Stretch
,”
J. Biomech.
,
30
(
7
), pp.
753
756
.
25.
Lanir
,
Y.
,
1996
, “
Plausibility of Structural Constitutive Equations for Swelling Tissues—Implications of the C-N and S-E Conditions
,”
J. Biomech. Eng.
,
118
, pp.
10
16
.
26.
Lanir
,
Y.
,
1994
, “
Plausibility of Structural Constitutive Equations for Isotropic Soft Tissues in Finite Static Deformations
,”
J. Appl. Mech.
,
61
, pp.
695
702
.
27.
Spencer, A., 1972, “Deformations of Fibre-reinforced Materials,” Oxford science research papers. Glasgow, Oxford University Press. p. 128.
28.
Hiester
,
E. D.
, and
Sacks
,
M. S.
,
1998
, “
Optimal Bovine Pericardial Tissue Selection Sites, I. Fiber Architecture and Tissue Thickness Measurements
,”
J. Biomed. Mater. Res.
,
39
(
2
), pp.
207
214
.
29.
Sacks
,
M. S.
, and
Gloeckner
,
D. C.
,
1999
, “
Quantification of the Fiber Architecture and Biaxial Mechanical Behavior of Porcine Intestinal Submucosa
,”
J. Biomed. Mater. Res.
,
46
, pp.
1
10
.
30.
Trowbridge, E., 1989, “Mechanical Characteristics of Pericardial Tissue and Their Relevance to Bioprosthetic Design,” Critical Reviews in Biocompatibility, 5, pp. 105–172.
31.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1988, Numerical Receipes in C., Cambridge, Cambridge University Press. p. 735.
32.
Mendenhall, W., and Sincich, T., 1988, “Statistics for the Engineering and Computer Sciences,” San Francisco, Dellen. p. 1036.
33.
Hilbert
,
S. L.
,
Ferrans
,
V. J.
, and
Swanson
,
W. M.
,
1986
, “
Optical Methods for the Nondestructive Evaluation of Collagen Morphology in Bioprosthetic Heart Valves
,”
J. Biomed. Mater. Res.
,
20
, pp.
1411
1421
.
34.
Brossollet
,
L. J.
, and
Vito
,
R. P.
,
1996
, “
A new Approach to Mechanical Testing and Modeling of Biological Tissues, with Application to Blood Vessels
,”
J. Biomech. Eng.
,
118
(
November
), pp.
433
439
.
35.
Sacks
,
M. S.
,
2000
, “
A Structural Constitutive Model for Chemically Treated Planar Connective Tissues Under Biaxial Loading
,”
Computational Mech., Berlin
,
26
(
3
), pp.
243
249
.
36.
Zioupos
,
P.
,
Barbenel
,
J. C.
, and
Fisher
,
J.
,
1994
, “
Anisotropic Elasticity and Strength of Glutaraldehyde Fixed Bovine Pericardium for use in Pericardial Bioprosthetic Valves
,”
J. Biomed. Mater. Res.
,
28
, pp.
49
57
.
37.
Lee
,
J. M.
,
Haberer
,
S. A.
, and
Boughner
,
D. R.
,
1989
, “
The Bovine Pericardial Xenograft: I. Effect of Fixation in Aldehydes Without Constraint on the Tensile Properties of Bovine Pericardium
,”
J. Biomed. Mater. Res.
,
23
, pp.
457
475
.
38.
Waldman, S. D., Sacks, M. S., and Lee, J. M., 2002, “Boundary Conditions During Biaxial Testing of Planar Connective Tissues: Part 2: Fiber Orientation,” J. Mater. Sci.: Mater. Med., in-press.
39.
Sun, W., Sacks, M. S., and Scott. M., 2001, “A Robust Constitutive Model for Heart Valve Biomaterials,” in Bioengineering conference. Snow Bird, Utah.
40.
Kukreti
,
U.
, and
Belkoff
,
S. M.
,
2000
, “
Collagen Fibril D-period May Change as a Function of Strain and Location in Ligament
,”
J. Biomech.
,
33
(
12
), pp.
1569
1574
.
41.
Kojic
,
M.
,
Mijailovic
,
S.
, and
Zdravkovic
,
N.
,
1998
, “
A Numerical Algorithm for Stress Integration of a Fiber-fiber Kinetics Model with Coulomb Friction for Connective Tissue
,”
Computational Mech., Berlin
,
21
(
2
), pp.
189
198
.
You do not currently have access to this content.