Dynamic assessment of three-dimensional (3D) skeletal kinematics is essential for understanding normal joint function as well as the effects of injury or disease. This paper presents a novel technique for measuring in-vivo skeletal kinematics that combines data collected from high-speed biplane radiography and static computed tomography (CT). The goals of the present study were to demonstrate that highly precise measurements can be obtained during dynamic movement studies employing high frame-rate biplane video-radiography, to develop a method for expressing joint kinematics in an anatomically relevant coordinate system and to demonstrate the application of this technique by calculating canine tibio-femoral kinematics during dynamic motion. The method consists of four components: the generation and acquisition of high frame rate biplane radiographs, identification and 3D tracking of implanted bone markers, CT-based coordinate system determination, and kinematic analysis routines for determining joint motion in anatomically based coordinates. Results from dynamic tracking of markers inserted in a phantom object showed the system bias was insignificant (−0.02 mm). The average precision in tracking implanted markers in-vivo was 0.064 mm for the distance between markers and 0.31° for the angles between markers. Across-trial standard deviations for tibio-femoral translations were similar for all three motion directions, averaging 0.14 mm (range 0.08 to 0.20 mm). Variability in tibio-femoral rotations was more dependent on rotation axis, with across-trial standard deviations averaging 1.71° for flexion/extension, 0.90° for internal/external rotation, and 0.40° for varus/valgus rotation. Advantages of this technique over traditional motion analysis methods include the elimination of skin motion artifacts, improved tracking precision and the ability to present results in a consistent anatomical reference frame.

1.
Markolf
,
K. L.
,
William
,
B. L.
,
Shoemaker
,
S. C.
, and
Amstutz
,
H. C.
,
1981
, “
The Role of Joint Load in Knee Stability
,”
J. Bone Jt. Surg.
,
63
, pp.
570
585
.
2.
Schipplein
,
O. D.
, and
Andriacchi
,
T. P.
,
1991
, “
Interaction Between Active and Passive Knee Stabilizers During Level Walking
,”
J. Orthop. Res.
,
9
, pp.
113
119
.
3.
Holden
,
J. P.
,
Orsini
,
J. A.
,
Siegel
,
K. L.
,
Kepple
,
T. M.
,
Gerber
,
L. H.
, and
Stanhope
,
S. J.
,
1997
, “
Surface Movement Errors in Shank Kinematics and Knee Kinetics During Gait
,”
Gait & Posture
,
5
, pp.
217
227
.
4.
Reinschmidt
,
C.
,
van den Bogert
,
A. J.
,
Nigg
,
B. M.
,
Lundberg
,
A.
, and
Murphy
,
N.
,
1997
, “
Effect of Skin Movement on the Analysis of Skeletal Knee Joint Motion During Running
,”
J. Biomech.
,
30
, pp.
729
732
.
5.
Lafortune
,
M. A.
,
Lambert
,
C. E.
, and
Lake
,
M. J.
,
1992
, “
Skin Marker Displacement at the Knee Joint. NACOB II: The Second North American Congress on Biomechanics,” Chicago, IL: Pergamon Press
,
J. Biomech.
,
26
, pp.
299
299
.
6.
Cappozzo
,
A.
,
Canati
,
F.
,
Leardini
,
A.
,
Benedetti
,
M. G.
, and
Della Croce
,
U.
,
1996
, “
Position and Orientation in Space of Bones During Movement: Experimental Artifacts
,”
Clin. Biomech. (Los Angel. Calif.)
,
11
, pp.
90
100
.
7.
Spoor
,
C. W.
, and
Veldpaus
,
F. E.
,
1980
, “
Rigid Body Motion Calculated from Spacial Coordinates of Markers
,”
J. Biomech.
,
13
, pp.
391
393
.
8.
Andriacchi
,
T. P.
,
Alexander
,
E. J.
,
Toney
,
M. K.
,
Dyrby
,
C. O.
, and
Sum
,
J.
,
1998
, “
A Point Cluster Method for In Vivo Motion Analysis: Applied to a Study of Knee Kinematics
,”
J. Biomech. Eng.
,
120
, pp.
743
749
.
9.
Cappozzo
,
A.
,
Capello
,
A.
,
Della Croce
,
U.
, and
Pensalfini
,
F.
,
1997
, “
Surface Marker Cluster Design Criterial for 3-D Bone Movement Reconstruction
,”
IEEE Trans. Biomed. Eng.
,
44
, pp.
1165
1174
.
10.
Alexander
,
E. J.
, and
Andriacchi
,
T. P.
,
2001
, “
Correcting for Deformation in Skin-Based Marker Systems
,”
J. Biomech.
,
34
, pp.
355
362
.
11.
Fleming
,
B.
,
Beynnon
,
B.
,
Renstrom
,
P.
,
Johnson
,
R.
,
Nichols
,
C.
,
Peura
,
G.
, and
Uh
,
B.
,
1999
, “
The Strain Behavior of the Anterior Cruciate Ligament During Stair Climbing: An In Vivo Study
,”
Arthroscopy
,
15
, pp.
185
191
.
12.
Shepherd
,
D. E.
, and
Seedhom
,
B. B.
,
1999
, “
Thickness of Human Articular Cartilage in Joints of the Lower Limb
,”
Ann. Rheum. Dis.
58
, pp.
27
34
.
13.
Lafortune
,
M. A.
,
Cavanagh
,
P. R.
,
Sommer
,
H. J.
, and
Kalenak
,
A.
,
1992
, “
Three-dimensional Kinematics of the Human Knee During Walking
,”
J. Biomech.
,
25
, pp.
347
357
.
14.
Neptune
,
R. R.
, and
Hull
,
M. L.
,
1995
, “
Accuracy Assessment of Methods for Determining Hip Movement in Seated Cycling
,”
J. Biomech.
,
28
, pp.
423
437
.
15.
Sheehan
,
F. T.
,
Zajac
,
F. E.
, and
Drace
,
J. E.
,
1998
, “
Using Cine Phase Contrast Magnetic Resonance Imaging to Non-Invasively Study In Vivo Knee Dynamics
,”
J. Biomech.
,
31
, pp.
21
26
.
16.
Rhoad
,
R. C.
,
Klimkiewicz
,
J. J.
,
Williams
,
G. R.
,
Kesmodel
,
S. B.
,
Udupa
,
J. K.
,
Kneeland
,
J. B.
, and
Iannotti
,
J. P.
,
1998
, “
A New In Vivo Technique for Three-Dimensional Shoulder Kinematics Analysis
,”
Skeletal Radiol.
,
27
, pp.
92
97
.
17.
Karrholm
,
J.
,
Selvik
,
G.
,
Elmqvist
,
L.-G.
,
Hansson
,
L. I.
, and
Jonsson
,
H.
,
1988
, “
Three-Dimensional Instability of the Anterior Cruciate Deficient Knee
,”
J. Bone Jt. Surg.
,
70-B
, pp.
777
783
.
18.
Selvik
,
G.
,
1990
, “
Roentgen Stereophotogrammetric Analysis
,”
Acta Radiol.
,
31
, pp.
113
126
.
19.
Karrholm
,
J.
,
1989
, “
Roentgen Stereophotogrammetry. Review of Orthopedic Applications.
,”
Acta Orthop. Scand.
60
, pp.
491
503
.
20.
Reimann D. A., and Flynn M. J., 1992, “Automated Distortion Correction of X-Ray Image Intensifier Images,” IEEE Nuclear Science Symposium and Medical Imaging Conference, Orlando, FL: IEEE, pp. 1339–1341.
21.
Woltring
,
H. J.
,
1980
, “
Planar Control in Multi-Camera Calibration for 3-D Gait Studies
,”
J. Biomech.
,
13
, pp.
39
48
.
22.
Winter, D. A. Biomechanics and Motor Control of Human Movement. Wiley, New York, NY.
23.
Tashman S., DuPre´ K., Goitz H., Lock T., Kolowich P., and Flynn M., 1995, “A Digital Radiographic System for Determining 3d Joint Kinematics During Movement,” In: Williams KR, ed. 19th Annual Meeting of the American Society of Biomechanics. Stanford, CA: ASB Press, pp. 249–250.
24.
Fischer
,
K. J.
,
Manson
,
T. T.
,
Pfaeffle
,
H. J.
,
Tomaino
,
M. M.
, and
Woo
,
S. L.-Y.
,
2001
, “
A Method for Measuring Joint Kinematics Designed for Accurate Registration of Kinematic Data to Models Constructed from CT Data
,”
J. Biomech.
,
34
, pp.
377
383
.
25.
Boissonnat J.-D., and Geiger B., 1993, “Three Dimensional Reconstruction of Complex Shapes Based on the Delaunay Triangulation,” In: Acharya RS, Goldgof DB, eds. Biomedical Image Processing and Biomedical Visualization: SPIE, pp. 964–975.
26.
Kane T. R., Likins P. W., and Levinson D. A., 1983, Spacecraft Dynamics, New York, McGraw-Hill.
27.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
J. Biomech. Eng.
,
105
, pp.
136
144
.
28.
Korvick
,
D. L.
, and
Pijanowski
,
G. J.
,
1994
, “
Three-Dimensional Kinematics of the Intact and Cranial Cruciate Ligament Deficient Stifle of Dogs
,”
J. Biomech.
,
27
, pp.
77
87
.
29.
American Society for Testing and Materials, 1996, “Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods,” Annual Book of ASTM Standards, 14.02.
30.
Alberius P., 1983, “Bone Reactions to Tantalum Markers. A Scanning Electron Microscopic Study,” Acta Anat (Basel), 115, pp. 310–318.
31.
Glantz
,
P. O.
,
Bjorlin
,
G.
, and
Sundstrom
,
B.
,
1975
, “
Tissue Reactions to Some Dental Implant Materials. An In Vivo Study in White Rats
,”
Odontol Revy
,
26
, pp.
231
238
.
You do not currently have access to this content.