In this paper, we present a growth mixture model for cartilage. The main features of this model are illustrated in a simple equilibrium boundary-value problem that is chosen to illustrate how a mechanical theory of cartilage growth may be applied to growth-related experiments on cartilage explants. The cartilage growth mixture model describes the independent growth of the proteoglycan and collagen constituents due to volumetric mass deposition, which leads to the remodeling of the composition and the mechanical properties of the solid matrix. The model developed here also describes how the material constants of the collagen constituent depend on a scalar parameter that may change over time (e.g., crosslink density); this leads to a remodeling of the structural and mechanical properties of the collagen constituent. The equilibrium boundary-value problem that describes the changes observed in cartilage explants harvested at different stages of a growth or a degenerative process is formulated. This boundary-value problem is solved using existing experimental data for developing bovine cartilage explants harvested at three developmental stages. The solution of the boundary-value problem in conjunction with existing experimental data suggest the types of experimental studies that need to be conducted in the future to determine model parameters and to further refine the model.

1.
Mow, V. C., and Ratcliffe, A., 1997, “Structure and Function of Articular Cartilage and Meniscus,” Basic Orthopaedic Biomechanics, ed., V. C. Mow, and W. C. Hayes, Raven Press, New York, pp. 113–178.
2.
Maroudas, A., 1979, “Physico-chemical Properties of Articular Cartilage,” Adult Articular Cartilage, ed., M. A. R. Freeman, Pitman Medical, Tunbridge Wells, England, pp. 215–290.
3.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
J. Biomech. Eng.
,
113
, pp.
245
258
.
4.
Basser
,
P. J.
,
Schneiderman
,
R.
,
Bank
,
R.
,
Wachtel
,
E.
, et al.
,
1998
, “
Mechanical Properties of the Collagen Network in Human Articular Cartilage as Measured by Osmotic Stress Technique
,”
Arch. Biochem. Biophys.
,
351
, pp.
207
219
.
5.
Furuto
,
D. K.
, and
Miller
,
E. J.
,
1987
, “
Isolation and Characterization of Collagens and Procollagens
,”
Methods Enzymol.
,
144
, pp.
41
139
.
6.
Eyre
,
D. R.
,
Koob
,
T. J.
, and
Van Ness
,
K. P.
,
1984
, “
Quantitation of Hydroxypyridinium Crosslinks in Collagen by High-performance Liquid Chromatography
,”
Anal. Biochem.
,
137
, pp.
380
388
.
7.
Woo
,
S. L.-Y.
,
Akeson
,
W. H.
, and
Jemmott
,
G. F.
,
1976
, “
Measurements of Nonhomogeneous Directional Mechanical Properties of Articular Cartilage in Tension
,”
J. Biomech.
,
9
, pp.
785
791
.
8.
Venn
,
M. F.
, and
Maroudas
,
A.
,
1977
, “
Chemical Composition and Swelling of Normal and Osteoarthritic Femoral Head Cartilage I: Chemical Composition
,”
Annals Rheum. Dis.
36
, pp.
121
129
.
9.
Sah
,
R. L.
,
Trippel
,
S. B.
, and
Grodzinsky
,
A. J.
,
1996
, “
Differential Effects of Serum, IGF-I, and FGF-2 on the Maintenance of Cartilage Physical Properties During Long-term Culture
,”
J. Orthop. Res.
,
14
, pp.
44
52
.
10.
Treppo
,
S.
,
Koepp
,
H.
,
Quan
,
E. C.
,
Cole
,
A. A.
, et al.
,
2000
, “
Comparison of Biomechanical and Biochemical Properties of Cartilage from Human Knee and Ankle Pairs
,”
J. Orthop. Res.
,
18
(
5
), pp.
739
748
.
11.
Maroudas
,
A.
,
Bullough
,
P.
,
Swanson
,
S. A. V.
, and
Freeman
,
M. A. R.
,
1968
, “
The Permeability of Articular Cartilage
,”
J. Bone Jt. Surg.
,
50-B
, pp.
166
177
.
12.
Pal
,
S.
,
Tang
,
L.-H.
,
Choi
,
H.
,
Habermann
,
E.
, et al.
,
1981
, “
Structural Changes During Development in Bovine Fetal Epiphyseal Cartilage
,”
Coll. Relat. Res.
,
1
, pp.
151
176
.
13.
Strider
,
W.
,
Pal
,
S.
, and
Rosenberg
,
L.
,
1975
, “
Comparison of Proteoglycans from Bovine Articular Cartilage
,”
Biochim. Biophys. Acta
,
379
, pp.
271
281
.
14.
Thonar
,
E. J.-M.
, and
Sweet
,
M. B. E.
,
1981
, “
Maturation-related Changes in Proteoglycans of Fetal Articular Cartilage
,”
Arch. Biochem. Biophys.
,
208
, pp.
535
547
.
15.
Chen, S. S., and Sah, R. L., 2001, “Contributions of Collagen Network and Fixed Charge to the Confined Compression Modulus of Articular Cartilage,” J. Biomech., (submitted).
16.
Wong
,
M.
,
Ponticiello
,
M.
,
Kovanen
,
V.
, and
Jurvelin
,
J. S.
,
2000
, “
Volumetric Changes of Articular Cartilage During Stress Relaxation in Unconfined Compression
,”
J. Biomech.
,
33
(
9
), pp.
1049
1054
.
17.
Williamson
,
A. K.
,
Chen
,
A. C.
,
Masuda
,
K.
,
Thonar
,
E. J.
, et al.
,
2001
, “
Evolution of the Biomechanical Properties of Articular Cartilage During Development: Function-composition Relationships
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
26
, pp.
427
427
.
18.
Dorland, W. A., 1981, Dorland’s illustrated Medical Dictionary, 26th ed., W. B. Saunders Company, Philadelphia.
19.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed., Springer-Verlag, New York p. 569.
20.
Skalak
,
R.
,
Gasgupta
,
G.
,
Moss
,
M.
,
Otten
,
E.
, et al.
,
1982
, “
Analytical Description of Growth
,”
J. Theor. Biol.
,
94
, pp.
555
577
.
21.
Taber
,
L.
,
1998
, “
A Model for Aortic Growth Based on Fluid Shear and Fiber Stresses
,”
ASME J. Biomech. Eng.
,
120
, pp.
348
354
.
22.
Johnson
,
B. E.
, and
Hoger
,
A.
,
1993
, “
The Dependence of the Elasticity Tensor on Residual Stress
,”
J. Elast.
,
33
, pp.
145
165
.
23.
Merriam-Webster Collegiate Dictionary, 2001, 10th, http://www.m-w.com/dictionary.htm
24.
Truesdell, C., and Toupin, R. A., 1960, “The Classical Field Theories,” Handbuch der Physik, ed., S. Flugge, Springer-Verlag, Berlin, III/I.
25.
Muller
,
I.
,
1968
, “
A Thermodynamic Theory of Mixtures of Fluids
,”
Arch. Ration. Mech. Anal.
,
28
, pp.
1
39
.
26.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1970
, “
The Flow of Fluid Through an Elastic Solid
,”
Acta Mech.
,
9
, pp.
329
340
.
27.
Bowen
,
R. M.
,
1980
, “
Incompressible Porous Medial Models by use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
,
18
, pp.
1129
1148
.
28.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiment
,”
J. Biomech. Eng.
,
102
, pp.
73
84
.
29.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, et al.
,
1997
, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage from Confined Compression Experiments
,”
J. Biomech.
,
30
, pp.
1157
1164
.
30.
Klisch, S. M., and Hoger, A., 2002, “Volumetric Growth of Thermoelastic Materials and Mixtures,” Math. Mech. Solids, (in press).
31.
Klisch, S. M., Sah, R. L., and Hoger, A., 2000, “A Growth Mixture Theory for Cartilage,” ASME Mechanics in Biology, BED-46, pp. 229–242.
32.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.
33.
Van Dyke, T. J., and Hoger, A., 2002, “Should the Growth Law be Defined on the Current or Initial Configuration?,” J. Theor. Biol., (submitted).
34.
Klisch
,
S. M.
,
Van Dyke
,
T.
, and
Hoger
,
A.
,
2001
, “
A Theory of Volumetric Growth for Compressible Elastic Materials
,”
Math. Mech. Solids
,
6
, pp.
551
575
.
35.
Epstein
,
M.
, and
Maugin
,
G. A.
,
2000
, “
Thermomechanics of Volumetric Growth in Uniform Bodies
,”
Int. J. Plast.
,
16
, pp.
951
978
.
36.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2002
, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Mathematical Models and Methods in Applied Science
,
12
(
3
), pp.
407
430
.
37.
Johnson
,
B. E.
, and
Hoger
,
A.
,
1995
, “
The Use of a Virtual Configuration in Formulating Constitutive Equations for Residually Stressed Elastic Materials
,”
J. Elast.
,
41
, pp.
177
215
.
38.
Mills
,
N.
,
1966
, “
Incompressible Mixtures of Newtonian Fluids
,”
Int. J. Eng. Sci.
,
4
, pp.
97
112
.
39.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics-II. A Continuum Model of Cartilage Electrokinetics and Correlation with Experiments
,”
J. Biomech.
,
20
, pp.
629
639
.
40.
Bachrach
,
N. B.
,
Mow
,
V. C.
, and
Guilak
,
F.
,
1998
, “
Incompressibility of the Solid Matrix of Articular Cartilage Under High Hydrostatic Pressures
,”
J. Biomech.
,
31
, pp.
445
451
.
41.
Sajdera
,
S. W.
, and
Hascall
,
V. C.
,
1969
, “
Proteinpolysaccharide Complex from Bovine Nasal Cartilage. A Comparison of Low and High Shear Extraction Procedures
,”
J. Biol. Chem.
,
244
, pp.
77
87
.
42.
Pottenger
,
L. A.
,
Webb
,
J. E.
, and
Lyon
,
N. B.
,
1985
, “
Kinetics of Extraction of Proteoglycans from Human Cartilage
,”
Arthritis Rheum.
,
28
, pp.
323
330
.
43.
Zhu
,
W.
,
Mow
,
V. C.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
,
1993
, “
Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatment
,”
J. Orthop. Res.
,
11
, pp.
771
781
.
44.
Hoger
,
A.
,
1999
, “
A Second Order Constitutive Theory for Hyperelastic Materials
,”
Int. J. Solids Struct.
,
36
, pp.
847
868
.
45.
Truesdell, C., and Noll, W., 1965, “The Non-Linear Field Theories of Mechanics,” Handbuch der Physik, ed., S. Flugge, Springer-Verlag, Berlin, III/III.
46.
Williamson, A. W., Chen, A. C., and Sah, R. L., 2001, “Compressive Properties and Structure-function Relationships of Developing Bovine Articular Cartilage,” J. Orthop. Res., (in press).
47.
Atkin
,
R. J.
,
Chadwick
,
P.
, and
Steel
,
T. R.
,
1967
, “
Uniqueness Theorems for Linearized Theories of Interacting Continua
,”
Mathematika
,
14
, pp.
27
42
.
48.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
122
, pp.
576
586
.
49.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
1997
, “
Depth-dependent Confined Compression Modulus of Full-thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
, pp.
499
506
.
50.
Chen
,
A. C.
,
Bae
,
W. C.
,
Schinagl
,
R. M.
, and
Sah
,
R. L.
,
2001
, “
Depth- and strain-dependent Mechanical and Electromechanical Properties of Full-thickness Bovine Articular Cartilage in Confined Compression
,”
J. Biomech.
,
34
, pp.
1
12
.
51.
Chen, S. S., Falcovitz, Y. H., Schneiderman, R., Maroudas, A. et al., 2001, “Depth-dependent Compressive Properties of Normal Aged Human Femoral Head Articular Cartilage,” Osteoarthritis Cartilage, (in press).
52.
Buschmann
,
M. D.
,
Maurer
,
A. M.
,
Berger
,
E.
, and
Hunziker
,
E. B.
,
1996
, “
A Method of Quantitative Autoradiography for the Spatial Localization of Proteoglycan Synthesis Rates in Cartilage
,”
J. Histochem. Cytochem.
,
44
, pp.
423
431
.
53.
Setton
,
L. A.
,
Toyama
,
H.
, and
Mow
,
V. C.
,
1998
, “
Swelling and Curling Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
120
, pp.
355
361
.
54.
Pauwels, F., 1976, Biomechanics of the Normal and Diseased Hip; Theoretical Foundations, Technique and Results of Treatment: An Atlas, ed., Springer-Verlag, New York, 276 pp.
55.
Guilak, F., Sah, R. L., and Setton, L. A., 1997, “Physical Regulation of Cartilage Metabolism,” Basic Orthopaedic Biomechanics, ed., V. C. Mow, and W. C. Hayes, Raven Press, New York, pp. 179–207.
56.
Trippel
,
S. B.
,
1995
, “
Growth Factor Actions on Articular Cartilage
,”
J. Rheumatology
,
43S
, pp.
129
132
.
57.
Adkins
,
J. E.
,
1958
, “
Dynamic Properties of Resilient Materials: Constitutive Equations
,”
Philos. Trans. R. Soc. London
,
250A
, pp.
519
541
.
You do not currently have access to this content.