We present experimental and computational results that describe the level, distribution, and importance of velocity fluctuations within the venous anastomosis of an arteriovenous graft. The motivation of this work is to understand better the importance of biomechanical forces in the development of intimal hyperplasia within these grafts. Steady-flow in vitro studies (Re=1060 and 1820) were conducted within a graft model that represents the venous anastomosis to measure velocity by means of laser Doppler anemometry. Numerical simulations with the same geometry and flow conditions were conducted by employing the spectral element technique. As flow enters the vein from the graft, the velocity field exhibits flow separation and coherent structures (weak turbulence) that originate from the separation shear layer. We also report results of a porcine animal study in which the distribution and magnitude of vein-wall vibration on the venous anastomosis were measured at the time of graft construction. Preliminary molecular biology studies indicate elevated activity levels of the extracellular regulatory kinase ERK1/2, a mitogen-activated protein kinase involved in mechanotransduction, at regions of increased vein-wall vibration. These findings suggest a potential relationship between the associated turbulence-induced vein-wall vibration and the development of intimal hyperplasia in arteriovenous grafts. Further research is necessary, however, in order to determine if a correlation exists and to differentiate the vibration effect from that of flow related effects.

1.
Kanterman
,
R. Y.
,
Vesely
,
T. M.
,
Pilgram
,
T. K.
,
Guy
,
B. W.
,
Windus
,
D. W.
, and
Picus
,
D.
,
1995
, “
Dialysis Access Grafts: Anatomic Location of Venous Stenosis and Results of Angioplasty
,”
Radiology
,
195
, pp.
135
9
.
1.
Fillinger
,
M. F.
,
Kerns
,
D. B.
,
Bruch
,
D.
,
Reinitz
,
E. R.
, and
Schwartz
,
R. A.
,
1990
, “
Does the End-to-end Venous Anastomosis Offer a Functional Advantage Over the End-to-side Venous Anastomosis in High-output Arteriovenous Grafts?
,”
J. Vasc. Surg.
,
12
, pp.
676
88
;
2.
discussion 688–90.
1.
Fillinger, M. F., Kerns, D. B., and Schwartz, R. A., 1991, “Hemodynamics and Intimal Hyperplasia,” Vascular Access for Hemodialysis-II, B. G. Sommer and M. L. Henry, eds., W. L. Gore & Associates, Inc., and Precept Press, Inc., pp. 21–51.
2.
Fillinger
,
M. F.
,
Reinitz
,
E. R.
,
Schwartz
,
R. A.
,
Resetarits
,
D. E.
,
Paskanik
,
A. M.
,
Bruch
,
D.
, and
Bredenberg
,
C. E.
,
1990
, “
Graft Geometry and Venous Intimal-medial Hyperplasia in Arteriovenous Loop Grafts
,”
J. Vasc. Surg.
,
11
, pp.
556
66
.
3.
Fillinger
,
M. F.
, and
Schwartz
,
R. A.
,
1993
, “
Volumetric Blood Flow Measurement With Color Doppler Ultrasonography: The Importance of Visual Clues
,”
J. Ultrasound Med.
,
12
, pp.
123
30
.
4.
Ethier
,
C. R.
,
Prakash
,
S.
,
Steinman
,
D. A.
,
Leask
,
R. L.
,
Couch
,
G. C.
, and
Ojha
,
M.
,
2000
, “
Steady Flow Separation Patterns in a 45 Degree Junction
,”
J. Fluid Mech.
,
411
, pp.
1
38
.
5.
Ethier
,
C. R.
,
Steinman
,
D. A.
,
Zhang
,
X.
,
Karpik
,
S. R.
, and
Ojha
,
M.
,
1998
, “
Flow Waveform Effects on End-to-side Anastomotic Flow Patterns
,”
J. Biomech.
,
31
, pp.
609
17
.
6.
Jones
,
S. A.
,
Giddens
,
D. P.
,
Loth
,
F.
,
Zarins
,
C. K.
,
Kajiya
,
F.
,
Morita
,
I.
,
Hiramatsu
,
O.
,
Ogasawara
,
Y.
, and
Tsujioka
,
K.
,
1997
, “
In-vivo Measurements of Blood Flow Velocity Profiles in Canine Ilio-Femoral Anastomotic Bypass Grafts
,”
J. Biomech. Eng.
,
119
, pp.
30
8
.
7.
Keynton
,
R. S.
,
Evancho
,
M. M.
,
Sims
,
R. L.
, and
Rittgers
,
S. E.
,
1999
, “
The Effect of Graft Caliber Upon Wall Shear Within In Vivo Distal Vascular Anastomoses
,”
J. Biomech. Eng.
,
121
, pp.
79
88
.
8.
Keynton
,
R. S.
,
Rittgers
,
S. E.
, and
Shu
,
M. C.
,
1991
, “
The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: An In Vitro Model Study
,”
J. Biomech. Eng.
,
113
, pp.
458
63
.
9.
Lei
,
M.
,
Giddens
,
D. P.
,
Jones
,
S. A.
,
Loth
,
F.
, and
Bassiouny
,
H.
,
2001
, “
Pulsatile Flow in an End-to-side Vascular Graft Model: Comparison of Computations With Experimental Data
,”
J. Biomech. Eng.
,
123
, pp.
80
7
.
10.
Loth
,
F.
,
Jones
,
S. A.
,
Giddens
,
D. P.
,
Bassiouny
,
H. S.
,
Glagov
,
S.
, and
Zarins
,
C. K.
,
1997
, “
Measurements of Velocity and Wall Shear Stress Inside a PTFE Vascular Graft Model Under Steady Flow Conditions
,”
J. Biomech. Eng.
,
119
, pp.
187
94
.
11.
Loth
,
F.
,
Jones
,
S. A.
,
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Nassar
,
R. F.
,
Glagov
,
S.
, and
Bassiouny
,
H.
,
2001
, “
Relative Contribution of Wall Shear Stress and Injury in Experimental Intimal Thickening at PTFE End-to-side Arterial Anastomoses
,”
J. Biomech. Eng.
,
124
, pp.
44
51
.
12.
Ojha
,
M.
,
1993
, “
Spatial and Temporal Variations of Wall Shear Stress Within an End-to-side Arterial Anastomosis Model
,”
J. Biomech.
,
26
, pp.
1377
88
.
13.
Ojha
,
M.
,
1994
, “
Wall Shear Stress Temporal Gradient and Anastomotic Intimal Hyperplasia
,”
Circ. Res.
,
74
, pp.
1227
31
.
14.
Ojha
,
M.
,
Ethier
,
C. R.
,
Johnston
,
K. W.
, and
Cobbold
,
R. S.
,
1990
, “
Steady and Pulsatile Flow Fields in an End-to-side Arterial Anastomosis Model
,”
J. Vasc. Surg.
,
12
, pp.
747
53
.
15.
Ojha
,
M.
,
Leask
,
R. L.
,
Johnston
,
K. W.
,
David
,
T. E.
, and
Butany
,
J.
,
2000
, “
Histology and Morphology of 59 Internal Thoracic Artery Grafts and Their Distal Anastomoses
,”
Ann. Thorac. Surg.
,
70
, pp.
1338
44
.
16.
Sherwin
,
S. J.
,
Shah
,
O.
,
Doorly
,
D. J.
,
Peiro
,
J.
,
Papaharilaou
,
Y.
,
Watkins
,
N.
,
Caro
,
C. G.
, and
Dumoulin
,
C. L.
,
2000
, “
The Influence of Out-of-plane Geometry on the Flow Within a Distal End-to-side Anastomosis
,”
J. Biomech. Eng.
,
122
, pp.
86
95
.
17.
White
,
S. S.
,
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Bassiouny
,
H.
,
Loth
,
F.
,
Jones
,
S. A.
, and
Glagov
,
S.
,
1993
, “
Hemodynamic Patterns in Two Models of End-to-side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number, and Hood Length
,”
J. Biomech. Eng.
,
115
, pp.
104
11
.
18.
Glagov, S., Giddens, D. P., Bassiouny, H., White, S. S., and Zarins, C. K., 1991, “Hemodynamic Effects and Tissue Reactions at Graft to Vein Anastomosis for Vascular Access,” Vascular Access for Hemodialysis-II, B. G. Sommer and M. L. Henry, eds., W. L. Gore & Associates, Inc., and Precept Press, Inc., pp. 3–20.
19.
Shu
,
M. C.
, and
Hwang
,
N. H.
,
1988
, “
Flow Phenomena in Compliant and Noncompliant Arteriovenous Grafts
,”
ASAIO Trans.
,
34
, pp.
519
23
.
20.
Shu
,
M. C.
, and
Hwang
,
N. H.
,
1991
, “
Haemodynamics of Angioaccess Venous Anastomoses
,”
J. Biomed. Eng.
,
13
, pp.
103
12
.
21.
Shu
,
M. C.
,
Noon
,
G. P.
, and
Hwang
,
N. H.
,
1987
, “
Phasic Flow Patterns at a Hemodialysis Venous Anastomosis
,”
Biorheology
,
24
, pp.
711
22
.
22.
Shu
,
M. C.
,
Noon
,
G. P.
, and
Hwang
,
N. H.
,
1987
, “
Flow Profiles and Wall Shear Stress Distribution at a Hemodialysis Venous Anastomosis: Preliminary Study
,”
Biorheology
,
24
, pp.
723
35
.
23.
Ene-Iordache
,
B.
,
Mosconi
,
L.
,
Remuzzi
,
G.
, and
Remuzzi
,
A.
,
2001
, “
Computational Fluid Dynamics of a Vascular Access Case for Hemodialysis
,”
J. Biomech. Eng.
,
123
, pp.
284
92
.
24.
Nagel
,
T.
,
Resnick
,
N.
,
Forbes
,
D.
, and
Gimbrone
,
M. A. J.
,
1999
, “
Vascular Endothelial Cells Respond to Spatial Gradients in Fluid Shear Stress by Enhanced Activation of Transcription Factors
,”
Arterioscler., Thromb., Vasc. Biol.
,
19
, pp.
1825
1834
.
25.
Bao
,
X.
,
Lu
,
C.
, and
Frangos
,
J. A.
,
1999
, “
Temporal Gradient in Shear but not Steady Shear Stress Induced PDGF-A and MCP-1 Expression in Endothelial Cells: Role of NO, NFkB, and egr-1
,”
Arterioscler., Thromb., Vasc. Biol.
,
19
, pp.
996
1003
.
26.
Yan
,
C.
,
Takahashi
,
M.
,
Okuda
,
M.
,
Lee
,
J. D.
, and
Berk
,
B. C.
,
1999
, “
Fluid Shear Stress Stimulates Big Mitogen-activated Protein Kinase 1 (BMK1) Activity in Endothelial Cells: Dependence on Tyrosine Kinases and Intracellular Calcium
,”
J. Biol. Chem.
,
274
, pp.
143
50
.
27.
Glagov
,
S.
,
1994
, “
Intimal Hyperplasia, Vascular Modeling, and the Restenosis Problem
,”
Circulation
,
89
, pp.
2888
91
.
28.
Zou
,
Y.
,
Hu
,
Y.
,
Metzler
,
B.
, and
Xu
,
Q.
,
1998
, “
Signal Transduction in Arteriosclerosis: Mechanical Stress-activated MAP Kinases in Vascular Smooth Muscle Cells (review)
,”
Int. J. Mol. Med.
,
1
, pp.
827
34
.
29.
Traub
,
O.
, and
Berk
,
B. C.
,
1998
, “
Laminar Shear Stress: Mechanisms by Which Endothelial Cells Transduce an Atheroprotective Force
,”
Arterioscler., Thromb., Vasc. Biol.
,
18
, pp.
677
85
.
30.
Bassiouny
,
H. S.
,
Song
,
R. H.
,
Hong
,
X. F.
,
Singh
,
A.
,
Kocharyan
,
H.
, and
Glagov
,
S.
,
1998
, “
Flow Regulation of 72-kD Collagenase IV (MMP-2) After Experimental Arterial Injury
,”
Circulation
,
98
, pp.
157
63
.
31.
Tseng
,
H.
,
Peterson
,
T. E.
, and
Berk
,
B. C.
,
1995
, “
Fluid Shear Stress Stimulates Mitogen-Activated Protein Kinase in Endothelial Cells
,”
Circ. Res.
,
77
, pp.
869
78
.
32.
Brunet
,
A.
,
Roux
,
D.
,
Lenormand
,
P.
,
Dowd
,
S.
,
Keyse
,
S.
, and
Pouyssegur
,
J.
,
1999
, “
Nuclear Translocation of p42/p44 Mitogen-activated Protein Kinase is Required for Growth Factor-induced Gene Expression and Cell Cycle Entry
,”
EMBO J.
,
18
, pp.
664
74
.
33.
Lenormand
,
P.
,
Brondello
,
J. M.
,
Brunet
,
A.
, and
Pouyssegur
,
J.
,
1998
, “
Growth Factor-induced p42/p44 MAPK Nuclear Translocation and Retention Requires both MAPK Activation and Neosynthesis of Nuclear Anchoring Proteins
,”
J. Cell Biol.
,
142
, pp.
625
33
.
34.
Schwachtgen
,
J. L.
,
Houston
,
P.
,
Campbell
,
C.
,
Sukhatme
,
V.
, and
Braddock
,
M.
,
1998
, “
Fluid Shear Stress Activation of egr-1 Transcription in Cultured Human Endothelial and Epithelial Cells is Mediated via the Extracellular Signal-related Kinase 1/2 Mitogen-activated Protein Kinase Pathway
,”
J. Clin. Invest.
,
101
, pp.
2540
9
.
35.
Bassiouny, H. S., 1997, “Egr-1 is Upregulated by Reduced Flow in the Injured Rabbit Carotid Artery,” pp. I–548.
36.
Song
,
R. H.
,
Kocharyan
,
H. K.
,
Fortunato
,
J. E.
,
Glagov
,
S.
, and
Bassiouny
,
H. S.
,
2000
, “
Increased Flow and Shear Stress Enhance In Vivo Transforming Growth Factor-betal After Experimental Arterial Injury
,”
Arterioscler., Thromb., Vasc. Biol.
,
20
, pp.
923
30
.
37.
Lindsay
,
R. M.
,
Blake
,
P. G.
,
Malek
,
P.
,
Posen
,
G.
,
Martin
,
B.
, and
Bradfield
,
E.
,
1997
, “
Hemodialysis Access Blood Flow Rates can be Measured by a Differential Conductivity Technique and are Predictive of Access Clotting
,”
Am. J. Kidney Dis.
,
30
, pp.
475
82
.
38.
Yedavalli, R. V., Loth, F., Yardimci, M. A., Prichard, W. F., Oshinski, J. N., Sadler, F., Charbel, F. T., and Alperin, N., 2001, “Construction of a Physical Model of the Human Carotid Artery Based Upon In Vivo Magnetic Resonance Images,” J. Biomech., in press, pp.
39.
Lee, S. H., Piersol, N. E., Loth, F., Fischer, P. F., Leaf, G., Smith, B., Yedavalli, R. V., Yardimci, M. A., Alperin, N., and Schwartz, L. B., 2000, “Automated Mesh Generation of an Arterial Bifurcation Based Upon In Vivo MR Images,” World Congress on Medical Physics and Bioengineering, Chicago, IL, pp. MO-G326.
40.
Fischer, P. F., and Mullen, J. S., 2001, “Filter-based Stabilization of Spectral Element Methods,” Comptes Rendus de l’Acade´mie des sciences Paris, Se´rie I-Analyse nume´rique, 332, pp. 265–270.
41.
Fischer
,
P. F.
,
1997
, “
An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
133
, pp.
84
101
.
42.
Fischer, P. F., Miller, N. I., and Tufo, H. M., 2000, “An Overlapping Schwarz Method for Spectral Element Simulation of Three-dimensional Incompressible Flows,” Parallel Solution of Partial Differential Equations, P. Bjørstad and M. Luskin, eds., Springer-Verlag, Heidelberg, pp. 159–181.
43.
Royston
,
T. J.
,
Mansy
,
H. A.
, and
Sandler
,
R. H.
,
1999
, “
Excitation and Propagation of Surface Waves on a Viscoelastic Half-space with Application to Medical Diagnosis
,”
J. Acoust. Soc. Am.
,
106
, pp.
3678
86
.
44.
Zhang
,
X.
,
Royston
,
T. J.
,
Mansy
,
H. A.
, and
Sandler
,
R. H.
,
2001
, “
Radiation Impedance of a Finite Circular Piston on a Viscoelastic Half-space with Application to Medical Diagnosis
,”
J. Acoust. Soc. Am.
,
109
, pp.
795
802
.
45.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.
46.
Lee, S. W., Loth, F., Royston, T. J., Fischer, P. F., Shaalan, W. E., and Bassiouny, H. S., “Turbulence induced vein-wall vibration may play a role in arteriovenous dialysis graft failure,” Proceedings of the 4th World Congress of Biomechanics, Calgary, Canada, Aug. 2002.
47.
Brossollet, L. J., 1992, “Effects of Cryopreservation on the Biaxial Mechanical Properties of Canine Saphenous Veins,” Ph.D. Dissertation, Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
48.
Tufo, H. M., Fischer, P. F., Papka, M. E., and Blom, K., 1999, “Numerical Simulation and Immersive Visualization of Hairpin Vortices,” ACM/IEEE SC99 Conf. on High Performance Networking and Computing, pp. Argonne preprint ANL/MCS P779-0899.
49.
Acalar
,
M. S.
, and
Smith
,
C. R.
,
1987
, “
A Study of Hairpin Vortices in a Laminar Boundary Layer. Part 1 Hairpin Vortices Generated by a Hemisphere Protuberance
,”
J. Fluid Mech.
,
175
, pp.
1
41
.
50.
Keynton
,
R. S.
,
Evancho
,
M. M.
,
Sims
,
R. L.
,
Rodway
,
N. V.
,
Gobin
,
A.
, and
Rittgers
,
S. E.
,
2001
, “
Intimal Hyperplasia and Wall Shear in Arterial Bypass Graft Distal Anastomoses: An In Vivo Model Study
,”
J. Biomech. Eng.
,
123
, pp.
464
73
.
You do not currently have access to this content.