The micropipette aspiration technique has been used extensively in recent years to measure the mechanical properties of living cells. In the present study, a boundary integral formulation with quadratic elements is used to predict the elastic equilibrium response in the micropipette aspiration contact problem for a three-dimensional incompressible spherical continuum cell model (Young’s modulus E). In contrast to the halfspace model [19], the spherical cell model accounts for nonlinearities in the cell response which result from a consideration of geometric factors including the finite cell dimension (radius R), curvature of the cell boundary, evolution of the cell-micropipette contact region and curvature of the edges of the micropipette (inner radius a, edge curvature radius ε). The efficiency of the boundary element method facilitates the quantification of cell response as a function of the scaled pressure $p/E,$ for the range of parameters $a/R=0.4-0.7,$$ε/a=0.02-0.08,$ in terms of two measures that can be quantified using video microscopy. These are the aspiration length, which measures projection of the cell into the micropipette, and a characteristic strain, which measures stretching along the symmetry axis. For both measures of cell response, the resistance to aspiration is found to decrease with increasing values of the aspect ratio $a/R$ and curvature parameter $ε/a,$ and the nonlinearities in the cell response are most pronounced in the earlier portion of the aspiration test. The aspiration length is found to exhibit less sensitivity to the aspect ratio $a/R$ than to the curvature parameter $ε/a,$ whereas the characteristic strain, which provides a more realistic measure of overall cell stiffness, exhibits sensitivity to the aspect ratio $a/R.$ The resistance to aspiration in the spherical cell model is initially less than that of the half space model but eventually exceeds the halfspace prediction and the deviation between the two models increases as the parameter $ε/a$ decreases. Adjustment factors for the Young’s modulus E, as predicted by the halfspace model, are presented and the deviation from the spherical cell model is found to be as large as 35%, when measured locally on the response curve. In practice, the deviation will be less than the maximum figure but its precise value will depend on the number of data points available in the experiment and the specific curve-fitting procedure. The spherical cell model allows for efficient and more realistic simulations of the micropipette aspiration contact problem and quantifies two observable measures of cell response that, using video microscopy, can facilitate the determination of Young’s modulus for various cell populations while, simultaneously, providing a means of evaluating the validity of continuum cell models. Furthermore, this numerical model may be readily extended to account for more complex geometries, inhomogeneities in cellular properties, or more complex constitutive descriptions of the cell.

1.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics-I. Electrokinetic Transduction and the Effects of Electrolyte pH and Ionic Strength
,”
J. Biomech.
,
20
, pp.
615
627
.
2.
Guilak
,
F.
,
1995
, “
Compression-induced Changes in the Shape and Volume of the Chondrocyte Nucleus
,”
J. Biomech.
,
28
, pp.
1529
1542
.
3.
Maroudas, A., 1979, “Physicochemical Properties of Articular Cartilage,” In: Adult Articular Cartilage, edited by M. Freeman. Tunbridge Wells: Pitman Medical, pp. 215–290.
4.
Mow, V. C., Bachrach, N., Setton, L. A., and Guilak, F., 1994, “Stress, Strain, Pressure, and Flow Fields in Articular Cartilage,” In: Cell Mechanics and Cellular Engineering, edited by V. C. Mow, F. Guilak, R. Tran-Son-Tay and R. Hochmuth. New York: Springer, Verlag, pp. 345–379.
5.
Guilak, F., Sah, R. L., and Setton, L. A., 1997, “Physical Regulation of Cartilage Metabolism,” In: Basic Orthopaedic Biomechanics (2nd ed.), edited by V. C. Mow and W. C. Hayes. Philadelphia: Lippincott-Raven, pp. 179–207.
6.
Guilak
,
F.
,
Jones
,
W. R.
,
Ting-Beall
,
H. P.
, and
Lee
,
G. M.
,
1999a
, “
The Deformation Behavior and Mechanical Properties of Chondrocytes in Articular Cartilage
,”
Osteoarthritis Cartilage
,
7
, pp.
59
70
.
7.
Jones
,
W. R.
,
Ting-Beall
,
H. P.
,
Lee
,
G. M.
,
Kelley
,
S. S.
,
Hochmuth
,
R. M.
, and
Guilak
,
F.
,
1999
, “
Alterations in Young’s Modulus and Volumetric Properties of Chondrocytes Isolated from Normal and Osteoarthritic Human Cartilage
,”
J. Biomech.
,
32
, pp.
119
127
.
8.
Agresar
,
G.
,
Linderman
,
J. J.
,
Tryggvason
,
G.
, and
Powell
,
K. G.
,
1998
, “
An Adaptive, Cartesian, Front-Tracking Method for the Motion, Deformation and Adhesion of Circulating Cells
,”
J. Comput. Phys.
,
143
, pp.
346
380
.
9.
Dong
,
C.
, and
Skalak
,
R.
,
1992
, “
Leukocyte Deformability: Finite Element Modeling of Large Viscoelastic Deformation
,”
J. Theor. Biol.
,
158
, pp.
173
193
.
10.
Drury
,
J. L.
, and
Dembo
,
M.
,
1999
, “
Hydrodynamics of Micropipette Aspiration
,”
Biophys. J.
,
76
, pp.
110
128
.
11.
Evans
,
E.
, and
Yeung
,
A.
,
1989
, “
Apparent Viscosity and Cortical Tension of Blood Granulocytes Determined by Micropipette Aspiration
,”
Biophys. J.
,
56
, pp.
151
160
.
12.
Needham
,
D.
, and
Hochmuth
,
R. M.
,
1990
, “
Rapid Flow of Passive Neutrophils into a 4 μm Pipet and Measurement of Cytoplasmic Viscosity
,”
J. Biomech.
,
112
, pp.
269
269
.
13.
Tsai
,
M. A.
,
Frank
,
R. S.
, and
Waugh
,
R. E.
,
1993
, “
Passive Mechanical—Behavior of Human Neutrophils—Power-Law Fluid
,”
Biophys. J.
,
65
, pp.
2078
2088
.
14.
Bottino
,
D. C.
,
1998
, “
Modeling Viscoelastic Networks and Cell Deformation in the Context of the Immersed Boundary Method
,”
J. Comput. Phys.
,
147
, pp.
86
113
.
15.
Bagge
,
U.
,
Skalar
,
R.
, and
Attefors
,
R.
,
1977
, “
Granulocyte Rheology: Experimental Studies in an In Vitro Microflow System
,”
,
7
, pp.
29
48
.
16.
Sato
,
M.
,
Theret
,
D. P.
,
Wheeler
,
L. T.
,
Ohshima
,
N.
, and
Nerem
,
R. M.
,
1990
, “
Application of the Micropipette Technique to the Measurement of Cultured Porcine Aortic Endothelial Cell Viscoelastic Properties
,”
ASME J. Biomech. Eng.
,
112
, pp.
263
268
.
17.
Schmid-Schonbein
,
G. W.
,
Sung
,
K.-L. P.
,
Tozeren
,
H.
,
Skalak
,
R.
, and
Chien
,
S.
,
1981
, “
Passive Mechanical Properties of Human Leukocytes
,”
Biophys. J.
,
36
, pp.
243
256
.
18.
Shin
,
D.
, and
Athanasiou
,
K. A.
,
1999
, “
Cytoindentation for Obtaining Cell Biomechanical Properties
,”
J. Orthop. Res.
,
17
, pp.
880
890
.
19.
Theret
,
D. P.
,
Levesque
,
M. J.
,
Sato
,
M.
,
Nerem
,
R. M.
, and
Wheeler
,
L. T.
,
1988
, “
The Application of a Homogeneous Half-Space Model in the Analysis of Endothelial Cell Micropipette Measurements
,”
ASME J. Biomech. Eng.
,
110
, pp.
190
199
.
20.
Guilak
,
F.
,
Ting-Beall
,
H. P.
,
Baer
,
A. E.
,
Jones
,
W. R.
,
Erickson
,
G. R.
, and
Setton
,
L. A.
,
1999
, “
Viscoelastic Properties of Intervertebral Disc Cells: Identification of Two Biomechanically Distinct Populations
,”
Spine
,
24
, pp.
2475
2483
.
21.
Guilak
,
F.
, and
Ting-Beall
,
H. P.
,
1999
, “
The Effects of Osmotic Presure on the Viscoelastic and Physical Properties of Articular Chondrocytes
,”
,
43
, pp.
103
104
.
22.
Lee
,
D. A.
,
Knight
,
M. M.
,
Bolton
,
J. F.
,
Idowu
,
B. D.
,
Kayser
,
M. V.
, and
,
D. L.
,
2000
, “
Chondrocyte Deformation Within Compressed Agarose Constructs at the Cellular and Sub-cellular Levels
,”
J. Biomech.
,
33
, pp.
81
95
.
23.
Guilak
,
F.
, and
Mow
,
V. C.
,
2000
, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
,
33
, pp.
1663
1673
.
24.
Cruse
,
T. A.
,
Snow
,
D. W.
, and
Wilson
,
R. B.
,
1977
, “
Numerical Solutions in Axisymmetric Elasticity
,”
Comput. Struct.
,
7
, pp.
445
451
.
25.
Rizzo
,
F. J.
,
1967
, “
An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics
,”
Q. Appl. Math.
,
25
, pp.
83
95
.
26.
Bakr, A. A., 1986, The Boundary Integral Equation Method in Axisymmetric Stress Analysis Problems, Springer-Verlag.
27.
Stroud, A. H., and Secrest, D., 1966, Gaussian Quadrature Formulae, Prentice-Hall, New York.
28.
Abramowitz, M., and Stegun, I. A., 1972, Handbook of Mathematical Functions, Dover, New York.
29.
Haider, M. A., and Guilak, F., 1999, “A Viscoelastic Boundary Element Model of Contact in the Micropipette Aspiration Test,” Proceedings of the Bioengineering Conference, ASME, 42, pp. 339–340.
30.
Haider
,
M. A.
, and
Guilak
,
F.
,
2000
, “
An Axisymmetric Boundary Integral Model for Incompressible Linear Viscoelasticity: Application to the Micropipette Aspiration Contact Problem
,”
ASME J. Biomech. Eng.
,
122
, pp.
236
244
.