Hydraulic resistance (HR) was measured for ten intact human lumbar vertebrae to further understand the mechanisms of fluid flow through porous bone. Oil was forced through the vertebral bodies under various volumetric flow rates and the resultant pressure was measured. The pressure-flow relationship for each specimen was linear. Therefore, HR was constant with a mean of The mean permeability of the intact vertebral bodies was These results indicate that this methodology is valid for whole bone samples and enables the exploration of the effects of HR on the creation of high-speed fractures.
Issue Section:
Technical Papers
1.
Carter
, D. R.
, and Hayes
, W. C.
, 1977
, “The Compressive Behavior of Bone as a Two-phase Porous Structure
,” J. Bone Jt. Surg., Am. Vol.
, 59
, pp. 954
–962
.2.
Bryant
, J. D.
, 1983
, “The Effect of Impact on the Marrow Pressure of Long Bones in Vitro
,” J. Biomech.
, 16
, pp. 659
–665
.3.
Bryant
, J. D.
, 1988
, “On the Mechanical Function of Marrow in Long Bones
,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
, 17
, pp. 55
–58
.4.
Swanson
, S. A.
, and Freeman
, M. A.
, 1966
, “Is Bone Hydraulically Strengthened?
,” Med. Biol. Eng. Comput.
, 4
, pp. 433
–438
.5.
Pugh
, J. W.
, Rose
, R. M.
, and Radin
, E. L.
, 1973
, “Elastic and Viscoelastic Properties of Trabecular Bone: Dependence on Structure
,” J. Biomech.
, 6
, pp. 475
–485
.6.
Kazarian
, L.
, and Graves
, G. A.
, 1977
, “Compressive Strength Characteristics of the Human Vertebral Centrum
,” Spine
, 2
, pp. 1
–14
.7.
Ochoa
, J. A.
, Heck
, D. A.
, Brandt
, K. D.
, and Hillberry
, B. M.
, 1991
, “The Effect of Intertrabecular Fluid on Femoral Head Mechanics
,” J. Rheumatol.
, 18
, pp. 580
–584
.8.
Ochoa
, J. A.
, Sanders
, A. P.
, Heck
, D. A.
, and Hillberry
, B. M.
, 1991
, “Stiffening of the Femoral Head Due to Inter-trabecular Fluid and Intraosseous Pressure
,” J. Biomech. Eng.
, 113
, pp. 259
–262
.9.
Ochoa, J. A. and Hillberry, B. M., 1992, “A Poroelastic Model for the Hydraulic Stiffening of Cancellous Bone,” 38th Annual Meeting, Orthopaedic Research Society, G. E. Freidlaender, ed., Rider Dickerson Inc., Washington, D. C., 17(1), pp. 163.
10.
Heck, D. A., Ochoa, J. A., Kiesler, T. W., Brandt, K. D., and Hillberry, B. M., 1991, “In-vivo Bone Hydraulics,” Transactions of the 37th Annual Meeting, Orthopaedic Research Society, B. Caterson, ed., Adept Printing Inc., Anaheim, CA, 16, pp. 490.
11.
Downey
, D. J.
, Simkin
, P. A.
, Lanzer
, W. L.
, and Matsen
, F. A.
, 1988
, “Hydraulic Resistance: A Measure of Vascular Outflow Obstruction in Osteonecrosis
,” J. Orthop. Res.
, 6
, pp. 272
–278
.12.
Simkin
, P. A.
, Pickerell
, C. C.
, and Wallis
, W. J.
, 1985
, “Hydraulic Resistance in Bones of the Canine Shoulder
,” J. Biomech.
, 18
, pp. 657
–663
.13.
Tran
, N. T.
, Watson
, N. A.
, Tencer
, A. F.
, Ching
, R. P.
, and Anderson
, P. A.
, 1995
, “Mechanism of the Burst Fracture in the Thoracolumbar Spine. The Effect of Loading Rate
,” Spine
, 20
, pp. 1984
–1988
.14.
Beaudoin
, A. J.
, Mihalko
, W. M.
, and Krause
, W. R.
, 1991
, “Finite Element Modelling of Polymethylmethacrylate Flow Through Cancellous Bone
,” J. Biomech.
, 24
, pp. 127
–136
.15.
Grimm
, M. J.
, and Williams
, J. L.
, 1997
, “Measurements of Permeability in Human Calcaneal Trabecular Bone
,” J. Biomech.
, 30
, pp. 743
–745
.16.
Hui
, P. W.
, Leung
, P. C.
, and Sher
, A.
, 1996
, “Fluid Conductance of Cancellous Bone Graft as a Predictor for Graft-Host Interface Healing
,” J. Biomech.
, 29
, pp. 123
–132
.17.
Lim
, T. H.
, and Hong
, J. H.
, 2000
, “Poroelastic Properties of Bovine Vertebral Trabecular Bone
,” J. Orthop. Res.
, 18
, pp. 671
–677
.18.
Nauman
, E. A.
, Fong
, K. E.
, and Keaveny
, T. M.
, 1999
, “Dependence of Intertrabecular Permeability on Flow Direction and Anatomic Site
,” Ann. Biomed. Eng.
, 27
, pp. 517
–524
.19.
Ochoa, J. A. and Hillberry, B. M., 1992, “Permeability of Bovine Cancellous Bone,” 38th annual meeting, Orthopaedic Research Society, G. E. Freidlaender, ed., Rider Dickerson Inc., Washington, D.C., 17(1), pp. 162.
20.
Muskat, M., 1937, The Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill, Inc., New York.
21.
Bryant, J. D., David, T., Gaskell, P. H., King, S., and Lond, G., 1989, “Rheology of Bovine Bone Marrow,” Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 203, pp. 71–75.
22.
Carter
, D. R.
, and Hayes
, W. C.
, 1976
, “Bone Compressive Strength: The Influence of Density and Strain Rate
,” Science
, 194
, pp. 1174
–1176
.23.
Argoubi
, M.
, and Shirazi-Adl
, A.
, 1996
, “Poroelastic Creep Response Analysis of a Lumbar Motion Segment in Compression
,” J. Biomech.
, 29
, pp. 1331
–1339
.24.
Lee
, C. K.
, Kim
, Y. E.
, Lee
, C. S.
, Hong
, Y. M.
, Jung
, J. M.
, and Goel
, V. K.
, 2000
, “Impact Response of the Intervertebral Disc in a Finite-Element Model
,” Spine
, 25
, pp. 2431
–2439
.25.
Carter
, J.
, Ching
, R.
, Mirza
, S.
, and Tencer
, A.
, 2000
, “Canal Geometry Changes Associated With Axial-compressive Cervical Spine Fracture
,” Spine
, 25
, pp. 46
–54
.26.
Ching, R., 1992, “Residual Stability in Thoracolumbar Spine Fractures: A Biomechanical Study,” Dissertation, University of Washington, Seattle, WA.
27.
Wille`n
, J.
, Lindahl
, S.
, Irstam
, L.
, Aldman
, B.
, and Nordwall
, A.
, 1984
, “The Thoracolumbar Crush Fracture. An Experimental Study on Instant Axial Dynamic Loading: The Resulting Fracture Type and Its Stability
,” Spine
, 9
, pp. 624
–631
.Copyright © 2002
by ASME
You do not currently have access to this content.