Hydraulic resistance (HR) was measured for ten intact human lumbar vertebrae to further understand the mechanisms of fluid flow through porous bone. Oil was forced through the vertebral bodies under various volumetric flow rates and the resultant pressure was measured. The pressure-flow relationship for each specimen was linear. Therefore, HR was constant with a mean of 2.22±1.45kPa*sec/ml. The mean permeability of the intact vertebral bodies was 4.90×1010±4.45×1010m2. These results indicate that this methodology is valid for whole bone samples and enables the exploration of the effects of HR on the creation of high-speed fractures.

1.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1977
, “
The Compressive Behavior of Bone as a Two-phase Porous Structure
,”
J. Bone Jt. Surg., Am. Vol.
,
59
, pp.
954
962
.
2.
Bryant
,
J. D.
,
1983
, “
The Effect of Impact on the Marrow Pressure of Long Bones in Vitro
,”
J. Biomech.
,
16
, pp.
659
665
.
3.
Bryant
,
J. D.
,
1988
, “
On the Mechanical Function of Marrow in Long Bones
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
17
, pp.
55
58
.
4.
Swanson
,
S. A.
, and
Freeman
,
M. A.
,
1966
, “
Is Bone Hydraulically Strengthened?
,”
Med. Biol. Eng. Comput.
,
4
, pp.
433
438
.
5.
Pugh
,
J. W.
,
Rose
,
R. M.
, and
Radin
,
E. L.
,
1973
, “
Elastic and Viscoelastic Properties of Trabecular Bone: Dependence on Structure
,”
J. Biomech.
,
6
, pp.
475
485
.
6.
Kazarian
,
L.
, and
Graves
,
G. A.
,
1977
, “
Compressive Strength Characteristics of the Human Vertebral Centrum
,”
Spine
,
2
, pp.
1
14
.
7.
Ochoa
,
J. A.
,
Heck
,
D. A.
,
Brandt
,
K. D.
, and
Hillberry
,
B. M.
,
1991
, “
The Effect of Intertrabecular Fluid on Femoral Head Mechanics
,”
J. Rheumatol.
,
18
, pp.
580
584
.
8.
Ochoa
,
J. A.
,
Sanders
,
A. P.
,
Heck
,
D. A.
, and
Hillberry
,
B. M.
,
1991
, “
Stiffening of the Femoral Head Due to Inter-trabecular Fluid and Intraosseous Pressure
,”
J. Biomech. Eng.
,
113
, pp.
259
262
.
9.
Ochoa, J. A. and Hillberry, B. M., 1992, “A Poroelastic Model for the Hydraulic Stiffening of Cancellous Bone,” 38th Annual Meeting, Orthopaedic Research Society, G. E. Freidlaender, ed., Rider Dickerson Inc., Washington, D. C., 17(1), pp. 163.
10.
Heck, D. A., Ochoa, J. A., Kiesler, T. W., Brandt, K. D., and Hillberry, B. M., 1991, “In-vivo Bone Hydraulics,” Transactions of the 37th Annual Meeting, Orthopaedic Research Society, B. Caterson, ed., Adept Printing Inc., Anaheim, CA, 16, pp. 490.
11.
Downey
,
D. J.
,
Simkin
,
P. A.
,
Lanzer
,
W. L.
, and
Matsen
,
F. A.
,
1988
, “
Hydraulic Resistance: A Measure of Vascular Outflow Obstruction in Osteonecrosis
,”
J. Orthop. Res.
,
6
, pp.
272
278
.
12.
Simkin
,
P. A.
,
Pickerell
,
C. C.
, and
Wallis
,
W. J.
,
1985
, “
Hydraulic Resistance in Bones of the Canine Shoulder
,”
J. Biomech.
,
18
, pp.
657
663
.
13.
Tran
,
N. T.
,
Watson
,
N. A.
,
Tencer
,
A. F.
,
Ching
,
R. P.
, and
Anderson
,
P. A.
,
1995
, “
Mechanism of the Burst Fracture in the Thoracolumbar Spine. The Effect of Loading Rate
,”
Spine
,
20
, pp.
1984
1988
.
14.
Beaudoin
,
A. J.
,
Mihalko
,
W. M.
, and
Krause
,
W. R.
,
1991
, “
Finite Element Modelling of Polymethylmethacrylate Flow Through Cancellous Bone
,”
J. Biomech.
,
24
, pp.
127
136
.
15.
Grimm
,
M. J.
, and
Williams
,
J. L.
,
1997
, “
Measurements of Permeability in Human Calcaneal Trabecular Bone
,”
J. Biomech.
,
30
, pp.
743
745
.
16.
Hui
,
P. W.
,
Leung
,
P. C.
, and
Sher
,
A.
,
1996
, “
Fluid Conductance of Cancellous Bone Graft as a Predictor for Graft-Host Interface Healing
,”
J. Biomech.
,
29
, pp.
123
132
.
17.
Lim
,
T. H.
, and
Hong
,
J. H.
,
2000
, “
Poroelastic Properties of Bovine Vertebral Trabecular Bone
,”
J. Orthop. Res.
,
18
, pp.
671
677
.
18.
Nauman
,
E. A.
,
Fong
,
K. E.
, and
Keaveny
,
T. M.
,
1999
, “
Dependence of Intertrabecular Permeability on Flow Direction and Anatomic Site
,”
Ann. Biomed. Eng.
,
27
, pp.
517
524
.
19.
Ochoa, J. A. and Hillberry, B. M., 1992, “Permeability of Bovine Cancellous Bone,” 38th annual meeting, Orthopaedic Research Society, G. E. Freidlaender, ed., Rider Dickerson Inc., Washington, D.C., 17(1), pp. 162.
20.
Muskat, M., 1937, The Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill, Inc., New York.
21.
Bryant, J. D., David, T., Gaskell, P. H., King, S., and Lond, G., 1989, “Rheology of Bovine Bone Marrow,” Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 203, pp. 71–75.
22.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1976
, “
Bone Compressive Strength: The Influence of Density and Strain Rate
,”
Science
,
194
, pp.
1174
1176
.
23.
Argoubi
,
M.
, and
Shirazi-Adl
,
A.
,
1996
, “
Poroelastic Creep Response Analysis of a Lumbar Motion Segment in Compression
,”
J. Biomech.
,
29
, pp.
1331
1339
.
24.
Lee
,
C. K.
,
Kim
,
Y. E.
,
Lee
,
C. S.
,
Hong
,
Y. M.
,
Jung
,
J. M.
, and
Goel
,
V. K.
,
2000
, “
Impact Response of the Intervertebral Disc in a Finite-Element Model
,”
Spine
,
25
, pp.
2431
2439
.
25.
Carter
,
J.
,
Ching
,
R.
,
Mirza
,
S.
, and
Tencer
,
A.
,
2000
, “
Canal Geometry Changes Associated With Axial-compressive Cervical Spine Fracture
,”
Spine
,
25
, pp.
46
54
.
26.
Ching, R., 1992, “Residual Stability in Thoracolumbar Spine Fractures: A Biomechanical Study,” Dissertation, University of Washington, Seattle, WA.
27.
Wille`n
,
J.
,
Lindahl
,
S.
,
Irstam
,
L.
,
Aldman
,
B.
, and
Nordwall
,
A.
,
1984
, “
The Thoracolumbar Crush Fracture. An Experimental Study on Instant Axial Dynamic Loading: The Resulting Fracture Type and Its Stability
,”
Spine
,
9
, pp.
624
631
.
You do not currently have access to this content.