To guide the development of improved procedures for selecting meniscal allografts, the objective of this study was to identify which cross-sectional parameters of a lateral meniscal allograft predict the contact pressure of the articular surface of the tibia. To meet the objective, the contact pressure of the articular surface of the tibia was measured with a lateral meniscal autograft and a lateral meniscal allograft using pressure sensitive film in 15 fresh-frozen human cadaveric knees. Allografts were matched only in transverse dimensions to the autograft but not in cross-sectional dimensions. Knees were loaded to 1200 N in compression at flexion angles of 0, 15, 30 and 45 degrees using a load application system that allowed unconstrained motion in the remaining degrees of freedom. Five cross-sectional parameters for both of the grafts in each of the anterior, middle, and posterior regions were derived from measurements obtained using a laser-based non-contacting three-dimensional coordinate digitizing system (3-DCDS) (Haut et al., J. Orthop Res, 2000). Five contact variables (i.e. the maximum pressure, mean pressure, contact area, and anterior-posterior and medial-lateral locations of the centroid of contact area) were determined from the pressure sensitive film. When each allograft was paired with the corresponding autograft, the root mean squared percent differences for the cross-sectional parameters ranged from a minimum of 28% for the width of the posterior region to 572% for the height of the posterior region. The root mean squared percent differences between the contact variables for paired grafts were 29% for the maximum pressure, 19% for the mean pressure, and 24% for the contact area. Differences in the cross-sectional parameters between the grafts were related to differences in the contact variables using regression analysis. Difference in the width was most often a predictor variable in the regression models with R2 values ⩾0.45. Differences in all of the four remaining cross-sectional parameters were also important predictor variables. Because failure to match cross-sectional parameters causes substantial difference in contact variables between an allograft and autograft and because cross-sectional parameters predict the contact pressure on the tibial plateau, protocols used to prospectively select allografts should concentrate on matching cross-sectional parameters and particularly the width to those of the original meniscus.

1.
Bolano
,
W. E.
, and
Grana
,
W. A.
,
1993
, “
Isolated Arthroscopic Partial Meniscectomy: Functional Radiographic Evaluation at Five Years
,”
Am. J. Sports Med.
21
, pp.
432
437
.
2.
Cox
,
J. S.
,
Nye
,
C. E.
,
Schaefer
,
W. W.
, and
Woodstein
,
I. J.
,
1975
, “
The Degenerative Effects of Partial and Total Resection of the Medial Meniscus in Dogs’ Knees
,”
Clin. Orthop. Relat. Res.
,
109
, pp.
178
183
.
3.
Cox
,
J. S.
, and
Cordell
,
L. D.
,
1977
, “
The Degenerative Effects of Medial Meniscus Tears in Dogs’ Knees
,”
Clin. Orthop. Relat. Res.
,
125
, pp.
236
242
.
4.
Hede
,
A.
,
Larsen
,
E.
, and
Sandberg
,
H.
,
1992
, “
Partial Versus Total Meniscectomy: A Prospective, Randomized Study with Long-Term Follow-Up
,”
J. Bone Joint Surg. Br.
,
74
, pp.
118
121
.
5.
Henning
,
C. E.
,
Lynch
,
M. A.
,
Yearout
,
K. M.
,
Vequist
,
S. W.
,
Stallbaumer
,
R. J.
, and
Decker
,
K. A.
,
1990
, “
Arthroscopic Meniscal Repair Using an Exogenous Fibrin Clot
,”
Clin. Orthop. Relat. Res.
,
252
, pp.
64
72
.
6.
Rangger
,
C.
,
Klestil
,
T.
,
Gloetzer
,
W.
,
Kemmler
,
G.
, and
Benedetto
,
L. P.
,
1995
, “
Osteoarthritis after Arthroscopic Partial Meniscectomy
,”
Am. J. Sports Med.
,
23
, pp.
240
244
.
7.
Baratz
,
M. E.
,
Fu
,
F. H.
, and
Mengato
,
R.
,
1986
, “
Meniscal Tears: The Effect of Meniscectomy and of Repair on Intraarticular Contact Areas and Stress in the Human Knee. A Preliminary Report
,”
Am. J. Sports Med.
,
14
, pp.
270
275
.
8.
Chen
,
M. I.
,
Branch
,
T. P.
, and
Hutton
,
W. C.
,
1996
, “
Is it Important to Secure the Horns During Lateral Meniscal Transplantation? A Cadaveric Study
,”
Arthroscopy
,
12
, pp.
174
181
.
9.
Alhalki
,
M. M.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
1999
, “
How Three Methods for Fixing a Medial Meniscal Autograft affect Tibial Contact Mechanics
,”
Am. J. Sports Med.
,
27
, pp.
320
328
.
10.
Alhalki
,
M. M.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2000
, “
Contact Mechanics of the Medial Tibial Plateau after Implantation of a Medial Meniscal Allograft: A Human Cadaveric Study
,”
Am. J. Sports Med.
,
28
, pp.
370
376
.
11.
Paletta
,
G. A.
, Jr.
,
Manning
,
T.
,
Snell
,
E.
,
Parker
,
R.
, and
Bergfeld
,
J.
,
1997
, “
The Effect of Allograft Meniscal Replacement on Intraarticular Contact Area and Pressures in the Human Knee. A Biomechanical Study
,”
Am. J. Sports Med.
,
25
, pp.
692
698
.
12.
L’Insalata, J., and Klatt, B. 1996, Accuracy and Reliability of Office Techniques for Meniscal Allograft Sizing, Cryolife Corp., Marietta, GA.
13.
Haut
,
T. L.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2000
, “
Use of Roentgenography and MRI to Predict Meniscal Geometry Determined with a Three-Dimensional Coordinate Digitizing System
,”
J. Orthop. Res.
,
18
, pp.
228
237
.
14.
Bach
,
J. M.
, and
Hull
,
M. L.
,
1995
, “
A New Load Application System for In Vitro Study of Ligamentous Injuries to the Human Knee Joint
,”
J. Biomech. Eng.
,
117
, pp.
373
382
.
15.
Berns
,
G. S.
,
Hull
,
M. L.
, and
Patterson
,
H. A.
,
1990
, “
Implementation of a Five Degree of Freedom Automated System to Determine Knee Flexibility In Vitro
,”
J. Biomech. Eng.
,
112
, pp.
392
400
.
16.
Martens, T. A., 1995, An In Vitro Osteotomy Method to Expose the Medial Compartment of the Human Knee, MS Thesis in Biomedical Engineering, University of California: Davis.
17.
Brown
,
T. D.
,
Anderson
,
D. D.
,
Nepola
,
J. V.
,
Singerman
,
R. J.
,
Pedersen
,
D. R.
, and
Brand
,
R. A.
,
1988
, “
Contact Stress Aberrations Following Imprecise Reduction of Simple Tibial Plateau Fractures
,”
J. Orthop. Res.
,
6
, pp.
851
862
.
18.
Liggins
,
A. B.
,
Hardie
,
W. R.
, and
Finlay
,
J. B.
,
1995
, “
The Spatial and Pressure Resolution of Fuji Pressure-Sensitive Film
,”
Experimental Mechanics
,
35
, pp.
166
173
.
19.
Huberti
,
H. H.
, and
Hayes
,
W. C.
,
1984
, “
Patellofemoral Contact Pressures. The Influence of Q-Angle and Tendofemoral Contact
,”
J. Bone Jt. Surg.
,
66
, pp.
715
724
.
20.
Pandy
,
M. G.
, and
Berme
,
N.
,
1989
, “
Quantitative Assessment of Gait Determinants During Single Stance via a Three-Dimensional Model—Part 1. Normal Gait
,”
J. Biomech. Eng.
,
22
, pp.
717
724
.
21.
Haut
,
T. L.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
1998
, “
A High-Accuracy Three-Dimensional Coordinate Digitizing System for Reconstructing the Geometry of Diarthrodial Joints
,”
J. Biomech.
,
31
, pp.
571
577
.
22.
Fuji, P.F.C.I., 1994, Pressure Measuring Film: Fuji Prescale Film, Tokyo, Japan.
23.
Liggins, A. B., Stanart, J. C. E., Finlay, J. B., and Rorabeck, C. H., 1992, “Calibration and Manipulation of Data from Fuji Pressure-sensitive Film,” in Experimental Mechanics: Technology Transfer Between High Tech Engineering, E. G. Littles, eds., Elsevier, New York.
24.
Neter, J., 1996, Applied Linear Statistical Models, 4th ed, Irwin, Chicago.
25.
Pollard
,
M. E.
,
Kang
,
Q.
, and
Berg
,
E. E.
,
1995
, “
Radiographic Sizing for Meniscal Transplantation
,”
Arthroscopy
,
11
, pp.
684
687
.
26.
Garrett
,
J. C.
,
Steensen
,
R. N.
, and
Stevensen
,
R. N.
,
1991
, “
Meniscal Transplantation in the Human Knee: A Preliminary Report [published erratum appears in Arthroscopy 1991; 7, p. 256]
Arthroscopy
,
7
, pp.
57
62
.
27.
Spilker, R. L. and Donzelli, P. S., 1992, “A Biphasic Finite Element Model of the Meniscus for Stress-Strain Analysis,” in Knee Meniscus: Basic and Clinical Foundations, V. C. Mow, Arnoczky, S. P., and Jackson, D. W., eds., Raven Press, New York.
28.
Schreppers
,
G. J. M. A.
,
Sauren
,
A. A. H. J.
, and
Huson
,
A.
,
1990
, “
A Numerical Model of the Load Transmission in the Tibio-Femoral Contact Area
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
204
, pp.
53
59
.
29.
Fithian
,
D. C.
,
Schmidt
,
M. B.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1989
, “
Human Meniscus Tensile Properties: Regional Variation and Biochemical Correlation
,”
Transactions of the ORS
,
35
, p.
205
205
.
30.
Komistek
,
R. D.
,
Stiehl
,
J. B.
,
Dennis
,
D. A.
,
Paxson
,
R. D.
, and
Soutas-Little
,
R. W.
,
1998
, “
Mathematical Model of the Lower Extremity Joint Reaction Forces Using Kane’s Method of Dynamics
,”
J. Biomech.
,
31
, pp.
185
189
.
31.
Ahmed
,
A. M.
, and
Burke
,
D. L.
,
1983
, “
In-Vitro Measurement of Static Pressure Distribution in Synovial Joints—Part I: Tibial Surface of the Knee
,”
J. Biomech. Eng.
,
105
, pp.
216
225
.
32.
Fukubayashi
,
T.
, and
Kurosawa
,
H.
,
1980
, “
The Contact Area and Pressure Distribution Pattern of the Knee. A Study of Normal and Osteoarthrotic Knee Joints
,”
Acta Orthop. Scand.
,
51
, pp.
871
879
.
You do not currently have access to this content.