A non-linear fracture mechanics approach was used to predict the failure response of complex cement-bone constructs. A series of eight mechanical tests with a combination of tensile and shear loading along the cement-bone interface was performed. Each experiment was modeled using the finite element method with non-linear constitutive models at the cement-bone interface. Interface constitutive parameters were assigned based on the quantity of bone interdigitated with the cement. There was a strong correlation r2=0.80 between experimentally measured and finite element predicted ultimate loads. The average error in predicted ultimate load was 23.9 percent. In comparison to the ultimate load predictions, correlations and errors for total energy to failure (r2=0.24, avg. error=38.2 percent) and displacement at 50 percent of the ultimate load (r2=0.27, avg. error=52.2 percent) were poor. The results indicate that the non-linear constitutive laws could be useful in predicting the initiation and progression of interface failure of cemented bone-implant systems. However, improvements in the estimation of post-yield interface properties from the quantity of bone interdigitated with cement are needed to enhance predictions of the overall failure response.

1.
Robinson
,
R. P.
,
Lovell
,
T. P.
,
Green
,
T. M.
, and
Bailey
,
G. A.
,
1989
, “
Early Femoral Component Loosening in DF-80 Total Hip Arthroplasty
,”
J. Arthroplasty
,
4
(
1
), pp.
55
64
.
2.
Jasty
,
M.
,
Maloney
,
W. J.
,
Bragdon
,
C. R.
,
Haire
,
T.
, and
Harris
,
W. H.
,
1990
, “
Histomorphological Studies of the Long-Term Skeletal Responses to Well Fixed Cemented Femoral Components
,”
J. Bone Jt. Surg.
,
72B
(
8
), pp.
1220
1229
.
3.
Hori
,
R. Y.
, and
Lewis
,
J. L.
,
1982
, “
Mechanical Properties of the Fibrous Tissue Found at the Bone-Cement Interface following Total Joint Replacement
,”
J. Biomed. Mater. Res.
,
16
(
6
), pp.
911
927
.
4.
Huiskes
,
R.
,
Verdonschot
,
N.
, and
Nivbrant
,
B.
,
1998
, “
Migration, Stem Shape, and Surface Finish in Cemented Total Hip Arthroplasty
,”
Clin. Orthop.
,
355
, pp.
103
112
.
5.
Herman
,
J. H.
,
Sowder
,
W. G.
,
Anderson
,
D.
,
Appel
,
A. M.
, and
Hopson
,
C. N.
,
1989
, “
Polymethylmethacrylate-Induced Release of Bone-Resorbing Factors
,”
J. Bone Jt. Surg.
,
71-A
(
10
), pp.
1530
1541
.
6.
Horowitz
,
S. M.
,
Doty
,
S. B.
,
Lane
,
J. M.
, and
Burstein
,
A. H.
,
1993
, “
Studies of the Mechanism by which the Mechanical Failure of Polymethylmethacrylate leads to Bone Resorption
,”
J. Bone Jt. Surg.
,
75-A
(
6
), pp.
802
813
.
7.
Dohmae
,
Y.
,
Bechtold
,
J. E.
, and
Sherman
,
R. E.
,
1988
, “
Reduction in Cement-Bone Interface Shear Strength between Primary and Revision Arthroplasty
,”
Clin. Orthop.
,
236
, pp.
214
240
.
8.
Bean
,
D. J.
,
Hollis
,
J. M.
,
Woo
,
S. L.-Y.
, and
Convery
,
F. R.
,
1988
, “
Sustained Pressurization of Polymethylmethacrylate: A Comparison of Low- and Moderate-Viscosity Bone Cements
,”
J. Orthop. Res.
,
6
(
4
), pp.
580
584
.
9.
Ko¨bel, R., Bergmann, G., and Boenick, U., 1976, Mechanical Engineering of the Cement-Bone Bond, Engineering in Medicine, M. Schldach and D. Hohman, eds., Springer-Verlag, New York, pp. 347–357.
10.
Wang
,
X.
, and
Agrawal
,
C. M.
,
2000
, “
A Mixed Mode Fracture Toughness Test of Bone-Biomaterial Interfaces
,”
J. Biomed. Mater. Res.
,
53
(
6
), pp.
664
672
.
11.
Clech
,
J. P.
,
Keer
,
L. M.
, and
Lewis
,
J. L.
,
1985
, “
A Model of Tension and Compression Cracks with Cohesive Zone at a Bone-Cement Interface
,”
ASME J. Biomech. Eng.
,
107
(
2
), pp.
175
182
.
12.
Kanninen, M. F., and Popelar, C. H., 1985, Advanced Fracture Mechanics, Oxford University Press, New York.
13.
Mann
,
K. A.
,
Werner
,
F. W.
, and
Ayers
,
D. C.
,
1997
, “
Modeling the Tensile Behavior of the Cement-Bone Interface
,”
ASME J. Biomech. Eng.
,
119
(
2
), pp.
175
178
.
14.
Mann
,
K. A.
,
Allen
,
M. J.
, and
Ayers
,
D. C.
,
1998
, “
Pre-Yield and Post-Yield Shear Behavior of the Cement-Bone Interface
,”
J. Orthop. Res.
,
16
(
3
), pp.
370
378
.
15.
Broek, D., 1991, Elementary Engineering Fracture Mechanics, Kluwer Academic Publishers, Boston.
16.
Harrigan
,
T. P.
, and
Harris
,
W. H.
,
1991
, “
A Three-Dimensional Non-Linear Finite Element Study of the Effect of Element-Prosthesis Debonding in Cemented Femoral Total Hip Components
,”
J. Biomech.
,
24
(
1
), pp.
1047
1058
.
17.
Brown
,
T. D.
,
Pedersen
,
D. R.
,
Radin
,
E. L.
, and
Rose
,
R. M.
,
1988
, “
Global Mechanical Consequences of Reduced Cement/Bone Coupling Rigidity in Proximal Femoral Arthroplasty: A Three-Dimensional Finite Element Analysis
,”
J. Biomech.
,
21
(
2
), pp.
115
129
.
18.
Verdonschot
,
N.
, and
Huiskes
,
R.
,
1996
, “
Mechanical Effects of Stem-Cement Interface Characteristics on Total Hip Replacement
,”
Clin. Orthop.
,
329
, pp.
326
336
.
19.
Mann
,
K. A.
,
Ayers
,
D. C.
,
Werner
,
F. W.
,
Nicoletta
,
R. J.
, and
Fortino
,
M. D.
,
1997
, “
Tensile Strength of the Cement-Bone Interface Depends on the Amount of Bone Interdigitated with PMMA Cement
,”
J. Biomech.
,
30
(
4
), pp.
339
346
.
20.
Lotz
,
J. C.
,
Gerhart
,
T. N.
, and
Hayes
,
W. C.
,
1990
, “
Mechanical Properties of the Trabecular Bone from the Proximal Femur: A Quantitative CT Study
,”
J. Comput. Assist. Tomogr.
,
14
, pp.
107
114
.
21.
Mann
,
K. A.
,
Werner
,
F. W.
, and
Ayers
,
D. C.
,
1999
, “
Mechanical Strength of the Cement-Bone Interface is Greater in Shear than in Tension
,”
J. Biomech.
,
32
(
11
), pp.
1251
1254
.
22.
Lewis
,
G.
,
1997
, “
Properties of Acrylic Bone Cement: State of the Art Review
,”
J. Biomed. Mater. Res.
,
38
(
2
), pp.
155
82
.
23.
Mow, V. C., and Hayes, W. C., 1991, Basic Orthopaedic Biomechanics, Raven Press, New York.
24.
Wong, P. C. W., Kulhawy, F. H., and Ingraffea, A. R., 1989, “Numerical Modeling of Interface Behavior for Drilled Shaft Foundations under Generalized Loading,” Foundation Engineering: Current Principles and Practices, F. H. Kulhawy, ed., ASCE, New York, pp. 565–579.
25.
Keaveny
,
T. M.
, and
Bartel
,
D. L.
,
1994
, “
Fundamental Load Transfer Patterns for Press-Fit, Surface-Treated Intra-Medullary Fixation Stems
,”
J. Biomech.
,
27
(
9
), pp.
1147
1158
.
26.
Mann
,
K. A.
,
Bartel
,
D. L.
,
Wright
,
T. M.
, and
Burstein
,
A. H.
,
1995
, “
Coulomb Frictional Interfaces in Modelling Cemented Total Hip Replacements: A More Realistic Model
,”
J. Biomech.
,
28
(
9
), pp.
1067
1078
.
27.
Boone
,
T. J.
,
Wawrzynek
,
P. A.
, and
Ingraffea
,
A. R.
,
1986
, “
Simulation of the Fracture Process in Rock with Application to Hydrofracturing
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
23
(
3
), pp.
255
265
.
28.
Maher, S. A., and McCormack, B. A. O., 1999, “Quantification of Interdigitation at Bone Cement/Cancellous Bone Interfaces in Cemented Femoral Reconstructions,” Proceedings of the Institute of Mechanical Engineers, 213, pp. 347–354.
29.
Lotz
,
J.
,
Cheal
,
E.
, and
Hayes
,
W.
,
1991
, “
Fracture Prediction for the Proximal Femur using Finite Element Models: Part II-Nonlinear analysis
,”
ASME J. Biomech. Eng.
,
113
(
4
), pp.
361
365
.
30.
Keyak
,
J.
,
Rossi
,
S.
,
Jones
,
K.
, and
Skinner
,
H.
,
1998
, “
Prediction of Femoral Fracture Load using Automated Finite Element Modelling
,”
J. Biomech.
,
31
(
2
), pp.
125
133
.
31.
Silva
,
M.
,
Keaveny
,
T.
, and
Hayes
,
W.
,
1998
, “
Computed Tomography-Based Finite Element Analysis Predicts Failure Loads and Fracture Patterns for Vertebral Sections
,”
J. Orthop. Res.
,
16
(
3
), pp.
300
308
.
32.
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1993
, “
A 20-year Perspective on the Mechanical Properties of Trabecular Bone
,”
ASME J. Biomech. Eng.
,
115
(
4B
), pp.
534
542
.
33.
Fenech
,
C. M.
, and
Keaveny
,
T. M.
,
1999
, “
A Cellular Solid Criterion for Predicting the Axial-Shear Failure Properties of Bovine Trabecular Bone
,”
ASME J. Biomech. Eng.
,
121
(
4
), pp.
414
422
.
34.
Majkowski
,
R. S.
,
Miles
,
A. W.
,
Bannister
,
G. C.
,
Perkins
,
J.
, and
Taylor
,
G. J. S.
,
1993
, “
Bone Surface Preparation in Cemented Joint Replacement
,”
J. Bone Jt. Surg.
,
75B
(
3
), pp.
459
463
.
You do not currently have access to this content.