The total cavopulmonary connection (TCPC) is a palliative cardiothoracic surgical procedure used in patients with one functioning ventricle that excludes the heart from the systemic venous to pulmonary artery pathway. Blood in the superior and inferior vena cavae (SVC, IVC) is diverted directly to the pulmonary arteries. Since only one ventricle is left in the circulation, minimizing pressure drop by optimizing connection geometry becomes crucial. Although there have been numerical and in–vitro studies documenting the effect of connection geometry on overall pressure drop, there is little published data examining the effect of SVC-IVC flow rate ratio on detailed fluid mechanical structures within the various connection geometries. We present here results from a numerical study of the TCPC connection, configured with various connections and SVC:IVC flow ratios. The role of major flow parameters: shear stress, secondary flow, recirculation regions, flow stagnation regions, and flow separation, was examined. Results show a complex interplay among connection geometry, flow rate ratio and the types and effects of the various flow parameters described above. Significant changes in flow structures affected local distribution of pressure, which in turn changed overall pressure drop. Likewise, changes in local flow structure also produced changes in maximum shear stress values; this may have consequences for platelet activation and thrombus formation in the clinical situation. This study sheds light on the local flow structures created by the various connections and flow configurations and as such, provides an additional step toward understanding the detailed fluid mechanical behavior of the more complex physiological configurations seen clinically.

1.
Fontan
,
F.
, and
Baudet
,
E.
,
1971
, “
Surgical Repair of Tricuspid Artesia
,”
Thorax
,
26
, pp.
240
248
.
2.
de Leval
,
M. R.
,
1998
, “
The Fontan Circulation
,”
Pediatr. Cardiol.
,
19
, pp.
316
320
.
3.
de Leval
,
M. R.
,
Kilner
,
P.
,
Gewillig
,
M.
, and
Bull
,
C.
,
1988
, “
Total Cavopulmonary Connection: A Logical Alternative to Atriopulmonary Connection for Complex Fontan Operations
,”
J. Thorac. Cardiovasc. Surg.
,
96
, pp.
682
695
.
4.
Sharma
,
S.
,
Goudy
,
S.
,
Walker
,
P.
,
Panchal
,
S.
,
Ensley
,
A.
,
Kanter
,
K.
,
Tam
,
V.
,
Fyfe
,
D.
, and
Yoganathan
,
A. P.
,
1996
, “
In Vitro Flow Experiments for Determination of Optimal Geometry of Total Cavopulmonary Connection for Surgical Repair of Children with Functional Single Ventricle
,”
J. Am. Coll. Cardiol.
,
27
, pp.
1264
1269
.
5.
Kim
,
Y. H.
,
Walker
,
P. G.
,
Fontaine
,
A. A.
,
Panchal
,
S.
,
Ensley
,
A. E.
,
Oshinski
,
J.
,
Sharma
,
S.
,
Ha
,
B.
,
Lucas
,
C. L.
, and
Yoganathan
,
A. P.
,
1995
, “
Hemodynamics of the Fontan Connection: An In-Vitro Study
,”
J. Biomech. Eng.
,
117
, pp.
423
428
.
6.
Sievers
,
H. H.
,
Gerdes
,
A.
, and
Pfister
,
G.
,
1998
, “
Superior Hydrodynamics of a Modified Cavopulmonary Connection for the Norwood Operation
,”
Ann. Thorac. Surg.
,
65
, pp.
1741
1745
.
7.
Lardo
,
A. C.
,
Webber
,
S. A.
,
Iyengar
,
A.
,
del Nido
,
P. J.
,
Friehs
,
I.
, and
Cape
,
E. G.
,
1999
, “
Bidirectional Superior Cavopulmonary Anastomosis Improves Mechanical Efficiency in Dilated Atriopulmonary Connections
,”
Thorac. Cardiovasc. Surg.
,
118
, pp.
681
691
.
8.
Low
,
H. T.
,
Chew
,
Y. T.
, and
Lee
,
CN.
,
1993
, “
Flow Studied on Atriopulmonary and Cavopulmonary Connections of the Fontan Operations for Congenital Heart Defects
,”
Ann. Biomed. Eng.
,
15
, pp.
303
307
.
9.
Migliavacca
,
F.
,
de Leval
,
M. R.
,
Dubini
,
G.
, and
Pietrabissa
,
R.
,
1996
, “
A Computational Pusatile Model of the Bidirectional Cavopulmonary Anastomosis: The Influence of Pulmonary Forward Flow
,”
J. Biomech. Eng.
,
118
, pp.
520
528
.
10.
Dubini
,
G.
,
de Leval
,
M. R.
,
Pietrabissa
,
R.
,
Montevecchi
,
F. M.
, and
Fumero
,
R.
,
1996
, “
A Numerical Fluid Mechanical Study of Repaired Congenital Heart Defects. Application to the Total Cavopulmonary Connection
,”
J. Biomech.
,
29
, pp.
111
121
.
11.
de Leval
,
M. R.
,
Dubini
,
G.
,
Migliavacca
,
F.
,
Jalali
,
H.
,
Camporini
,
G.
,
Redington
,
A.
, and
Pietrabissa
,
R.
,
1996
, “
Use of Computational Fluid Dynamics in Design of Surgical Procedures: Application to the Study of Competitive Flows in Cavopulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
,
111
, pp.
502
513
.
12.
Van Haesdonck
,
J. M.
,
Mertens
,
L.
,
Sizaire
,
R.
,
Montas
,
G.
,
Purnode
,
B.
,
Daenen
,
W.
,
Crochet
,
M.
, and
Gewillig
,
M.
,
1995
, “
Comparison by Computerized Numeric Modeling of Energy Losses in Different Fontan Connections
,”
Circulation
,
92
, pp.
II322–II326
II322–II326
.
13.
Lardo
,
A. C.
,
Webber
,
S. A.
,
Friehs
,
I.
,
del Nido
,
P. J.
, and
Cape
,
E. G.
,
1999
, “
Fluid Dynamic Comparison of Intra-Atrial and Extracadiac Total Cavopulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
,
117
, pp.
697
704
.
14.
Morgan
,
V. L.
,
Graham
,
T. P.
,
Roselli
,
R. J.
, and
Lorenz
,
C. H.
,
1998
, “
Alternations in Pulmonary Artery Flow Patterns and Shear Stress Determined with Three-Dimensional Phase-Contrast Magnetic Resonance Imaging in Fontan Patients
,”
J. Thorac. Cardiovasc. Surg.
,
116
, pp.
294
304
.
15.
Fogel
,
M. A.
,
Weinberg
,
P. M.
,
Hoydu
,
A.
,
Hubbard
,
A.
,
Rychik
,
J.
,
Jacobs
,
M.
,
Fellows
,
K. E.
, and
Haselgrove
,
J.
,
1997
, “
The Nature of Flow in the Systemic Venous Pathway Measured by Magnetic Resonance Blood Tagging in Patients Having the Fontan Operation
,”
J. Thorac. Cardiovasc. Surg.
,
114
, pp.
1032
1041
.
16.
Be’eri
,
E.
,
Maier
,
S. E.
,
Landzberg
,
M. J.
,
Chung
,
T.
, and
Geva
,
T.
,
1998
, “
In Vivo Evaluation of Fontan Pathway Flow Dynamics by Multidimensional Phase-Velocity Magnetic Resonance Imaging
,”
Circulation
,
98
, pp.
2873
2882
.
17.
Shirai
,
L. K.
,
Rosenthal
,
D. N.
,
Reitz
,
B. A.
,
Robbins
,
R. C.
, and
Dubin
,
A. M.
,
1998
, “
Arrhythmias and Thromboembolic Complications after the Extracardiac Fontan Operation
,”
J. Thorac. Cardiovasc. Surg.
,
115
, pp.
499
505
.
18.
McDonald, D. A., 1974, Blood Flow in Arteries, Camelot Press Ltd., South Hampton.
19.
CFD Research Corporation, 1999, CFD-ACE Theory Manual version 5.0, CFD Research Corporation, AL.
20.
Makhijani
,
V. B.
,
Yang
,
H. Q.
,
Singhal
,
A. K.
, and
Hwang
,
N. C.
,
1994
, “
An Experimental-numerical Analysis of MHV Cavitation: Effects of Leaflet Squeezing and Rebound
,”
J. Heart Valve Dis.
,
3
, pp.
35
48
.
21.
Makhijani
,
V. B.
,
Siegel
,
J. M.
, and
Hwang
,
N. C.
,
1996
, “
Numerical Analysis of Squeeze-flow in Tilting Disc Mechanical Heart Valves
,”
J. Heart Valve Dis.
,
5
, pp.
97
103
.
22.
Makhijani
,
V. B.
,
Yang
,
H. Q.
,
Dionne
,
P. J.
, and
Thubrikar
,
M. J.
,
1997
, “
Three-dimensional Coupled Fluid-structure Simulation of Pericardial Bioprosthetic Aortic Valve Function
,”
ASAIO J.
,
43
, pp.
M387–M392
M387–M392
.
23.
Sukumar
,
R.
,
Athavale
,
M. M.
,
Makhijani
,
V. B.
, and
Przekwas
,
A. J.
,
1996
, “
Application of Computational Fluid Dynamics Techniques to Blood Pumps
,”
Artif. Organs
,
20
, pp.
529
533
.
24.
Bergman, H. L., Siegel, J. M., Oshinski, J. N., Pettigrew, R. I., and Ku, D. N., 1996, “Computational Simulation of Magnetic Resonance Angiograms in Stenotic Vessels: Effect of Stenosis Severity,” Advances in Bioengineering, S. Rastegar, ed., ASME, New York, 33, 295–296.
25.
DeGroff
,
C. G.
,
Shandas
,
R.
, and
Valdes-Cruz
,
L. M.
,
1998
, “
Analysis of the Effect of Flow Rate on the Doppler Continuity Equation for Stenotic Orifice Area Calculations: A Numerical Study
,”
Circulation
,
97
, pp.
1597
1605
.
26.
DeGroff
,
C. G.
,
Baptista
,
A. M.
, and
Sahn
,
D. J.
,
1998
, “
Insights into the Proximal Flow Convergence Method Using 2D Finite Elements
,”
J. Am. Soc. Echocardiogr
,
11
, pp.
809
818
.
27.
DeGroff
,
C. G.
,
Shandas
,
R.
, and
Valdes-Cruz
,
L. M.
,
2000
, “
Accuracy of the Bernoulli Equation for Estimate of Pressure Gradient Across BT Shunts: An In Vitro and Numerical Study
,”
Pediatr. Cardiol.
, ,
21
, pp.
439
447
.
28.
DeGroff
,
C. G.
,
Shandas
,
R.
,
Kwon
,
J.
, and
Valdes-Cruz
,
L. M.
,
2000
, “
Utility of the Proximal Jet Width in the Assessment of Regurgitant and Stenotic Orifices-Effect of Low Velocity Filter and Comparison to Actual Vena Contracta Width: An In Vitro and Numerical Study
,”
European Journal of Echocardiography,
,
1
, pp.
42
54
.
29.
Shandas
,
R.
,
DeGroff
,
C. G.
,
Kwon
,
J.
, and
Valdes-Cruz
,
L. M.
,
1997
, “
Vortex Structures Within the Modified Fontan Connection Play a Primary Role in Energy Loss: In-vitro Digital Particle Image Velocimetry Studies
,”
J. Am. Coll. Cardiol.
,
29
, pp.
427A
427A
.
30.
Carlton
,
J.
,
DeGroff
,
C. G.
,
Shandas
,
R.
, and
Valdes-Cruz
,
L. M.
,
2000
, “
Effect of Changing Fluid Dynamics with Aging On the Optimal Total Cavo-Pulmonary Connection
,”
Circulation
,
102
, pp.
II–744
II–744
.
31.
Hellums
,
J. D.
,
1994
, “
1993 Whitaker Lecture: Biorheology in Thrombosis Research
,”
Ann. Biomed. Eng.
,
22
, pp.
445
455
.
32.
Baumgartner
,
H. R.
,
1973
, “
The Role of Blood Flow in Platelet Adhesion, Fibrin Deposition, and Formation of Mural Thrombi
,”
Microvasc. Res.
,
5
, pp.
167
179
.
33.
Turritto, V. T., Baumgartner, H. R., 1987, Platelet-Surface Interactions, Hemostasis and Thrombosis, R. Colman, et al., eds., Lippincott Company, Philadelphia, pp. 555–571.
34.
Nerem
,
R. M.
,
1992
, “
Vascular Fluid Mechanics, the Arterial Wall and Atherosclerosis
,”
J. Biomech. Eng.
,
114
, pp.
274
282
.
35.
Hedrick
,
M.
,
Elkins
,
R. C.
,
Knott-Craig
,
C. J.
, and
Razook
,
J. D.
,
1993
, “
Successful Thrombectomy for Thrombosis of the Right Side of the Heart after the Fontan Operation. Report of Two Cases and Review of the Literature
,”
Thorac. Cardiovasc. Surf.
,
105
, pp.
297
301
.
36.
Gijsen
,
F. J. H.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1999
, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model
,”
J. Biomech.
,
32
, pp.
601
608
.
You do not currently have access to this content.