Clamp induced injuries of the arterial wall may determine the outcome of surgical procedures. Thus, it is important to investigate the underlying mechanical effects. We present a three-dimensional finite element model, which allows the study of the mechanical response of an artery–treated as a two-layer tube-during arterial clamping. The important residual stresses, which are associated with the load-free configuration of the artery, are also considered. In particular, the finite element analysis of the deformation process of a clamped artery and the associated stress distribution is presented. Within the clamping area a zone of axial tensile peak-stresses was identified, which (may) cause intimal and medial injury. This is an additional injury mechanism, which clearly differs from the commonly assumed wall damage occurring due to compression between the jaws of the clamp. The proposed numerical model provides essential insights into the mechanics of the clamping procedure and the associated injury mechanisms. It allows detailed parameter studies on a virtual clamped artery, which can not be performed with other methodologies. This approach has the potential to identify the most appropriate clamps for certain types of arteries and to guide optimal clamp design.

1.
Dobrin
,
P. B.
,
McGurrin
,
J. F.
, and
McNulty
,
J. A.
,
1992
, “
Chronic Histologic Changes After Vascular Clamping are Not Associated with Altered Vascular Mechanics
,”
Ann. Vasc. Surg.
,
6
, pp.
153
159
.
2.
Margovsky
,
A. I.
,
Chambers
,
A. J.
, and
Lord
,
R. S.
,
1999
, “
The Effect of Increasing Clamping Forces on Endothelial and Arterial Wall Damage: An Experimental Study in the Sheep
,”
Cardiovasc. Surg.
,
7
, pp.
457
463
.
3.
Harvey
,
J. G.
, and
Gough
,
M. H.
,
1981
, “
A Comparison of the Traumatic Effects of Vascular Clamps
,”
Br. J. Surg.
,
68
, pp.
267
272
.
4.
Moore
,
W. M.
,
Manship
,
L. L.
, and
Bunt
,
T. J.
,
1985
, “
Differential Endothelial Injury Caused by Vascular Clamps and Vessel Loops. I. Normal Vessels
,”
Am. J. Surg.
,
51
, pp.
392
400
.
5.
Manship
,
L. L.
,
Moore
,
W. M.
,
Bynoe
,
R.
, and
Bunt
,
T. J.
,
1985
, “
Differential Endothelial Enjury Caused by Vascular Clamps and Vessel Loops. II. Atherosclerotic Vessels
,”
Am. J. Surg.
,
51
, pp.
401
406
.
6.
Moore
, Jr.,
W. M.
,
Bunt
,
T. J.
,
Hermann
,
G. D.
, and
Fogarty
,
T. J.
,
1988
, “
Assessment of Transmural Force During Application of Vascular Occlusive Devices
,”
J. Vasc. Surg.
,
8
, pp.
422
427
.
7.
Barone
,
G. W.
,
Conerly
,
J. M.
,
Farley
,
P. C.
,
Flanagan
,
T. L.
, and
Kron
,
I. L.
,
1989
, “
Assessing Clamp-related Vascular Injuries by Measurement of Associated Vascular Dysfunction
,”
Surgery
,
105
, pp.
465
471
.
8.
Gersak
,
B.
,
Trobec
,
R.
, and
Krisch
,
I.
,
1998
, “
Loss of Endothelium Mediated Vascular Relaxation as a Response to Various Clamping Pressure. Part I. A Pharmacological Study
,”
Panminerva Med.
,
40
, pp.
280
285
.
9.
Gersak
,
B.
,
Trobec
,
R.
, and
Psenicnik
,
M.
,
1998
, “
Loss of Endothelium Mediated Vascular Relaxation as a Response to Various Clamping Pressures. Part II. Direct Measurements of Clamping Pressures and Scanning Electron Microscope Study
,”
Panminerva Med.
,
40
, pp.
286
293
.
10.
Dujovny
,
M.
,
Wakenhut
,
N.
,
Kossovsky
,
N.
,
Gomes
,
C. W.
,
Laha
,
R. K.
,
Leff
,
L.
, and
Nelson
,
D.
,
1979
, “
Minimum Vascular Occlusive Force
,”
J. Neurosurg.
,
51
, pp.
662
668
.
11.
Aukland
,
A.
, and
Hurlow
,
R. A.
,
1981
, “
Carotid Stenosis due to Clamp Injury
,”
Br. J. Surg.
,
20
, pp.
282
282
.
12.
Margovsky
,
A. I.
,
Lord
,
R. S. A.
,
Meek
,
A. C.
, and
Bobryshev
,
Y. V.
,
1997
, “
Artery Wall Damage and Platelet Uptake from so-called Atraumatic Arterial Clamps: An Experimental Study
,”
Cardiovasc. Surg.
,
5
, pp.
42
47
.
13.
Risberg
,
B.
, and
Bylock
,
A.
,
1981
, “
Vascular Trauma Induced by Clamping-correlation Between Surface Ultrastructure and Fibrinolytic Activity
,”
Acta Chir. Scand.
,
147
, pp.
25
32
.
14.
Margovsky
,
A. I.
,
Lord
,
R. S. A.
, and
Chambers
,
A. J.
,
1997
, “
The Effect of Arterial Clamp Duration on Endothelial Injury: An Experimental Study
,”
Aust. N. Z. J. Surg.
,
67
, pp.
448
451
.
15.
Rhodin, J. A. G., 1980, “Architecture of the Vessel Wall,” Handbook of Physiology, The Cardiovascular System, edited by D. F. Bohr, A. D. Somlyo, and H. V. Sparks, 2, American Physiological Society, Bethesda, Maryland, pp. 1–31.
16.
Humphrey
,
J. D.
,
1995
, “
Mechanics of the Arterial Wall: Review and Directions
,”
Crit. Rev. Biomed. Eng.
,
23
, pp.
1
162
.
17.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
, pp.
1
48
.
18.
Cox
,
R. H.
,
1978
, “
Regional Variation of Series Elasticity in Canine Arterial Smooth Muscles
,”
Am. J. Physiol.
,
234
, pp.
H542–H551
H542–H551
.
19.
Holzapfel, G. A., 2001, “Biomechanics of Soft Tissue,” The Handbook of Materials Behavior Models. Volume III, Multiphysics Behaviors, Chapter 10, Composite Media, Biomaterials, edited by J. Lemaitre, Academic Press, Boston, pp. 1049–1063.
20.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
,
2001
, “
A Viscoelastic Model for Fiber-reinforced Composites at Finite Strains: Continuum Basis, Computational Aspects and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
4379
4403
.
21.
Gasser, T. C., and Holzapfel, G. A., 2001, “A Rate-independent Elastoplastic Constitutive Model for Biological Fiber-reinforced Composites at Finite Strains: Continuum Basis, Algorithmic Formulation and Finite Element Implementation,” submitted.
22.
Patel
,
D. J.
, and
Fry
,
D. L.
,
1969
, “
The Elastic Symmetry of Arterial Segments in Dogs
,”
Circ. Res.
,
24
, pp.
1
8
.
23.
Carew
,
T. E.
,
Vaishnav
,
R. N.
, and
Patel
,
D. J.
,
1968
, “
Compressibility of the Arterial Wall
,”
Circ. Res.
,
23
, pp.
61
68
.
24.
Holzapfel, G. A., 2000, Nonlinear Solid Mechanics. A Continuum Approach for Engineering, John Wiley & Sons, Chichester.
25.
Flory
,
P. J.
,
1961
, “
Thermodynamic Relations for Highly Elastic Materials
,”
Trans. Faraday Soc.
,
57
, pp.
829
838
.
26.
Ogden
,
R. W.
,
1978
, “
Nearly Isochoric Elastic Deformations: Application to Rubberlike Solids
,”
J. Mech. Phys. Solids
26
, pp.
37
57
.
27.
Holzapfel, G. A., Schulze-Bauer, C. A. J., and Stadler, M., 2000, “Mechanics of Angioplasty: Wall, Balloon and Stent,” Mechanics in Biology, edited by J. Casey and G. Bao, The American Society of Mechanical Engineers (ASME), New York, AMD-Vol. 242/BED-Vol. 46, pp. 141–156.
28.
Holzapfel
,
G. A.
, and
Weizsa¨cker
,
H. W.
,
1998
, “
Biomechanical Behavior of the Arterial Wall and its Numerical Characterization
,”
Comput. Biol. Med.
,
28
, pp.
377
392
.
29.
Roach
,
M. R.
, and
Burton
,
A. C.
,
1957
, “
The Reason for the Shape of the Distensibility Curve of Arteries
,”
Canadian Journal of Biochemistry and Physiology
,
35
, pp.
681
690
.
30.
Spencer, A. J. M., 1984, “Constitutive Theory for Strongly Anisotropic Solids,” Continuum Theory of the Mechanics of Fibre-Reinforced Composites, edited by A. J. M. Spencer, Springer-Verlag, Wien, pp. 1–32, CISM Courses and Lectures No. 282, International Center for Mechanical Sciences.
31.
Vaishnav, R. N., and Vossoughi, J., 1983, “Estimation of Residual Strains in Aortic Segments,” Biomedical Engineering II: Recent Developments, edited by C. W. Hall, Pergamon Press, New York, pp. 330–333.
32.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
, pp.
455
467
.
33.
Rachev
,
A.
,
1997
, “
Theoretical Study of the Effect of Stress-dependent Remodeling on Arterial Geometry under Hypertensive Conditions
,”
J. Biomech.
,
30
, pp.
819
827
.
34.
Chuong, C. J., and Fung, Y. C., 1986, “Residual Stress in Arteries,” Frontiers in Biomechanics, edited by G. W. Schmid-Scho¨nbein, S. L.-Y. Woo, and B. W. Zweifach, Springer-Verlag, New York, pp. 117–129.
35.
Johnson
,
B. E.
, and
Hoger
,
A.
,
1998
, “
The Use of Strain Energy to Quantify the Effect of Residual Stress on Mechanical Behavior
,”
Math. Mech. Solids
,
3
, pp.
447
470
.
36.
Rachev
,
A.
, and
Hayashi
,
K.
,
1999
, “
Theoretical Study of the Effects of Vascular Smooth Muscle Contraction on Strain and Stress Distributions in Arteries
,”
Ann. Biomed. Eng.
,
27
, pp.
459
468
.
37.
Vossoughi, J., Hedjazi, Z., and Borris, F. S., 1993, “Intimal Residual Stress and Strain in Large Arteries,” Bed-Vol. 24, 1993 Bioengineering Conference ASME, pp. 434–437.
38.
Taylor, R. L., 2000, FEAP—A Finite Element Analysis Program-Version 7.3, University of California at Berkeley.
39.
Carmines
,
D. V.
,
McElhaney
,
J. H.
, and
Stack
,
R.
,
1991
, “
A Piece-wise Non-linear Elastic Stress Expression of Human and Pig Coronary Arteries Tested in vitro
,”
J. Biomech.
,
24
, pp.
899
906
.
40.
Yu
,
Q.
,
Zhou
,
J.
, and
Fung
,
Y. C.
,
1993
, “
Neutral Axis Location in Bending and Young’s Modulus of Different Layers of Arterial Wall
,”
Am. J. Physiol.
,
265
, pp.
H52–H60
H52–H60
.
41.
Simo
,
J. C.
,
Taylor
,
R. L.
, and
Pister
,
K. S.
,
1985
, “
Variational and Projection Methods for the Volume Constraint in Finite Deformation Elasto-plasticity
,”
Comput. Methods Appl. Mech. Eng.
,
51
, pp.
177
208
.
42.
Nagtegaal
,
J. C.
,
Parks
,
D. M.
, and
Rice
,
J. R.
,
1974
, “
On Numerically Accurate Finite Element Solutions in the Fully Plastic Range
,”
Comput. Methods Appl. Mech. Eng.
,
4
, pp.
153
177
.
43.
Nichols, W. W. and O’Rourke, M. F., 1998, McDonald’s Blood Flow in Arteries, chap. 4, Arnold, London, 4th ed., pp. 73–97.
44.
Xie
,
J.
,
Zhou
,
J.
, and
Fung
,
Y. C.
,
1995
, “
Bending of Blood Vessel Wall: Stress-strain Laws of the Intima-Media and Adventitia Layers
,”
J. Biomech. Eng.
,
117
, pp.
136
145
.
45.
Slayback
,
J. B.
,
Bowen
,
W. W.
, and
Hinshaw
,
D. B.
,
1976
, “
Intimal Injury from Arterial Clamps
,”
Am. J. Surg.
,
132
, pp.
183
188
.
46.
Jackiewicz
,
T. A.
,
McGeachie
,
J. K.
, and
Tennant
,
M.
,
1996
, “
Structural Recovery of Small Arteries Following Clamp Injury: A Light and Electron Microscopic Investigation in the Rat
,”
Microsurgery
,
17
, pp.
674
680
.
You do not currently have access to this content.