In this work an extension of the adaptive-elasticity theory is proposed in order to include the contribution of bone microdamage as a stimulus. Some aspects of damaged-bone tissue adaptation, brought about by a change of the daily loading history, are investigated. In particular, under the assumption of a small strain approximation and isothermal conditions, the solution of the remodeling rate equation for steady homogeneous stress is discussed and the damage effect upon the remodeling time constant is shown. The result is both theoretical and numerical, based on a recent theory of internal damaged-bone remodeling (Ramtani, S., and Zidi, M., 1999, “Damaged-Bone Remodeling Theory: Thermodynamical Approach,” Mechanics Research Communications, Vol. 26, pp. 701–708. Ramtani, S., and Zidi, M., 2001, “A Theoretical Model of the Effect of Continum Damage on a Bone Adaption Model,” Journal of Biomechanics, Vol. 34, pp. 471–479) and motivated by the works of Cowin, S. C., and Hegedus, D. M., 1976, “Bone Remodeling I: Theory and Adaptive Elasticity,” Journal of Elasticity, Vol. 6, pp. 471–479 and Hegedus, D. H., and Cowin, S. C., 1976, “Bone Remodeling II: Small Strain Adaptive Elasticity,” Journal of Elasticity, Vol. 6, pp. 337–352.

1.
Wolff, J. L., 1986, The law of bone remodeling, Springer, Berlin.
2.
Huiskes, R., 1997, “Simulation of self-organization and functional adaptation in bone,” Springer-Verlag Berlin.
3.
Lee, T. C., Noelke, L., McMahon, G. T., Mulville, J. P., and Taylor, D., 1998, “Functional adaptation in bone,” P. Pedersen and M. P. Bendsoe, eds., Synthesis in Bio Solid Mechanics, Kluwere Academic Publishers, Dortrecht.
4.
Hart, R. T., and Davy, D. T., 1989, “Theories of Bone Modeling and Remodeling,” Chapter 11, Bone Mechanics, S. C. Cowin, ed., CRC Press.
5.
Zidi
,
M.
,
Ramtani
,
S.
,
1999
, “
Bone remodeling theory applied to the study of n unit-elements model
,”
J. Biomech.
,
32
, pp.
743
747
.
6.
Frost
,
H. M.
,
1960
, “
Presence of microscopic cracks in vivo in bone
,”
Bulletin of Henry Ford Hospital
,
8
, pp.
25
35
.
7.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1977
, “
Compact bone fatigue damage-I. Residual strength and stiffness
,”
J. Biomech.
,
10
, pp.
325
337
.
8.
Prendergast
,
P. J.
, and
Taylor
,
D.
,
1994
, “
Prediction of bone adaptation using damage accumulation
,”
J. Biomech.
,
27
, pp.
1067
1076
.
9.
Burr
,
D. B.
,
Martin
,
R. B.
,
Schaffler
,
M. B.
, and
Radin
,
E. L.
,
1985
, “
Bone remodeling in response to in vivo fatigue microdamage
,”
J. Biomech.
,
18
, pp.
189
200
.
10.
Burr
,
D. B.
,
Milgrom
,
C.
,
Boyd
,
R. D.
,
Higgins
,
W. L.
, and
Radinel
,
G.
,
1990
, “
Experimental stress fractures of the tibia-biological and mechanical aetiology in rabbits
,”
J. Bone Jt. Surg.
,
72B
, pp.
370
375
.
11.
Mori
,
S.
, and
Burr
,
D. B.
,
1993
, “
Increased intracortical remodeling following fatigue damage
,”
Sumitomo Electr. Tech. Rev.
,
14
, pp.
103
109
.
12.
Prendergast, P. J., and Huiskes, R., 1995. “Mathematical modeling of microdamage in bone remodelling and adaptation,” Bone Structure and Remodelling Recent Advances in Human Biology, A. Odgaard, H. Weinans, eds., World Scientific, Singapore Vol. 2, pp. 213–223.
13.
Nicolella, D. P., 1998, “Smart Skeletons,” Technology Today, Southwest Research Institute.
14.
Lee, T. C., 1997, Detection and accumulation of microdamage in bone, M.D. thesis, University of Dublin.
15.
Burr
,
D. B.
,
Turner
,
C. H.
,
Naick
,
P.
,
Forwood
,
M. R.
, and
Pidaparti
,
R.
,
1998
, “
En bloc staining of bone under load does not improve dye diffusion into microcracks
,”
J. Biomech.
,
31
, pp.
285
288
.
16.
Fazzalari
,
N. L.
,
Forwood
,
M. R.
,
Manthey
,
B. A.
,
Smith
,
K.
, and
Holesik
,
P.
,
1998
, “
Three-dimensional confocal images of microdamage in cancellous bone
,”
Bone
,
23
, pp.
373
378
.
17.
Carter
,
D. R.
,
1984
, “
Mechanical loading histories and cortical bone remodeling
,”
Calcif. Tissue Int.
,
36
, pp.
19
24
.
18.
Ramtani
,
S.
, and
Zidi
,
M.
,
1999
, “
Damaged-bone remodeling theory: thermodynamical approach
,”
Mech. Res. Commun.
,
26
, pp.
701
708
.
19.
Ramtani
,
S.
, and
Zidi
,
M.
,
2001
, “
A theoretical model of the effect of continuum damage on a bone adaptation model
,”
J. Biomech.
,
34
, pp.
471
479
.
20.
Kestin, J, 1986. “Metal plasticity as a problem of thermodynamics,” Proceedings of IUTAM Symposium on Thermomechanical coupling in solids, pp. 1–5.
21.
Bridgman, P. W., 1961, The nature of thermodynamics, Harper.
22.
Malvern, L. E., 1969. Introduction to the Mechanics of a Continuum Medium, Prentice-Hall, New Jersey.
23.
Cowin
,
S. C.
, and
Hegedus
,
D. M.
,
1976
, “
Bone remodeling I: Theory of adaptive elasticity
,”
J. Elast.
,
6
, pp.
313
325
.
24.
Hegedus
,
D. H.
, and
Cowin
,
S. C.
,
1976
, “
Bone remodeling II: Small strain adaptive elasticity
,”
J. Elast.
,
6
, pp.
337
352
.
25.
Coleman
,
B. D.
,
1964
, “
Thermodynamics of materials with memory
,”
Arch. Ration. Mech. Anal.
,
17
, pp.
1
46
.
26.
Coleman
,
B. D.
,
Gurtin
,
M.
,
1967
, “
Thermodynamics with internal variables
,”
J. Chem. Phys.
,
47
, pp.
597
613
.
27.
Lehmann
,
Th.
,
1989
, “
On the balance of energy and entropy at inelastic deformations of solid bodies
,”
Eur. J. Mech. A/Solids
,
8
, pp.
235
251
.
28.
Muschik, W., 1988. “Thermodynamical constitutive laws-outlines,” Constitutive Laws and Microstructure, Axelrad D. R. and Muschik W., eds, Springer-Verlag, Berlin, pp. 3–25.
29.
Chaboche
,
J. L.
,
1988
, “
Continuum damage mechanics. Part I, General concepts, Part II, Damage growth, crack initiation and crack growth
,”
ASME J. Appl. Mech.
,
55
, pp.
233
247
.
30.
Murakami
,
S.
, and
Kamya
,
K.
,
1997
, “
Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics
,”
Int. J. Mech. Sci.
,
39
, pp.
473
486
.
31.
Cowin
,
S. C.
,
1999
, “
Bone poroelasticity
,”
J. Biomech.
,
32
, pp.
217
238
.
32.
Krajcinovic
,
D.
,
Fonseka
,
G. U.
,
1981
, “
The continuum damage theory of brittle materials
,”
ASME J. Appl. Mech.
, Parts I and II,
48
, pp.
809
824
.
33.
Knets, I. and Malmeister, A., 1975, “The deformability ans strength oh human compact bone tissue,” Mechanics of Biological Solids, Proceedings of the Euromech Colloquium 68, Varna, Bulgaria.
34.
Wright
,
T. M.
, and
Hayes
,
W. C.
,
1976
, “
Tensile testing of bone over a wide range of strain rates; effects of strain rate, microstructure and density
,”
Med. Biol. Eng.
,
14
, pp.
671
679
.
35.
Firoozbakhsh
,
K.
, and
Cowin
,
S. C.
,
1980
, “
Devolution of inhomogeneities in bone structure-Predictions of adaptive elasticity theory
,”
J. Biomech.
,
102
, pp.
287
293
.
36.
Hart
,
R. T.
,
Davy
,
D. T.
, and
Heiple
,
K. G.
,
1984
, “
A computational method for stress analysis of adaptive elastic materials with a view toward applications in strain induced bone remodeling
,”
ASME J. Biomech. Eng.
,
106
, pp.
342
350
.
You do not currently have access to this content.