Biomaterials used in some biomedical devices are porous and exposed to normal and tangential flow of biofluids. To examine the influence of flow induced forces on the morphology and the biochemical responses of cells adhering to such biomaterials, a Hele-Shaw cell with a porous bottom wall was designed and characterized experimentally. Theoretical predictions for the flow in the chamber are provided and allow to quantify the shear stress and/or transmural pressure exerted on cells. It is thus possible to follow up continuously the shape changes of cells that are adherent on a permeable membrane used in bioreactors.

1.
Levesque
,
M. J.
, and
Nerem
,
R. M.
,
1985
, “
The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear Stress
,”
ASME J. Biomech. Eng.
,
107
, pp.
341
347
.
2.
Dewey
,
C. F.
, Jr.
,
Bussolari
,
S. R.
,
Gimbrone
,
M. A.
, Jr.
, and
Davies
,
P. F.
,
1981
, “
The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
,”
ASME J. Biomech. Eng.
,
103
, pp.
177
185
.
3.
Truskey
,
G. A.
, and
Pirone
,
J. S.
,
1990
, “
The Effect of Fluid Shear Stress Upon Cell Adhesion to Fibronectin-Treated Surfaces
,”
J. Biomed. Mater. Res.
,
24
, pp.
1333
1353
.
4.
Truskey
,
G. A.
, and
Proulx
,
T. L.
,
1993
, “
Relationship Between 3T3 Cell Spreading and the Strength of Adhesion on Glass and Silane Surfaces
,”
Biomaterials
,
14
, 4, pp.
243
254
.
5.
Acevedo
,
A. R.
,
Bowser
,
S. S.
,
Gerritsen
,
M. E.
, and
Bizios
,
R.
,
1993
, “
Morphological and Proliferative Responses of Endothelial Cells to Hydrostatic Pressure: Role of Fibroblast Growth Factor
,”
J. Cell Physiol.
,
157
, pp.
603
614
.
6.
Thoumine
,
O.
,
Nerem
,
R. M.
, and
Girard
,
P. R.
,
1995
, “
Oscillatory Shear Stress and Hydrostatic Pressure Modulate Cell-Matrix Attachment Proteins in Cultured Endothelial Cells
,”
In Vitro Cell Dev. Biol.
,
31A
, pp.
45
54
.
7.
Tarbell
,
J. M.
,
Demaio
,
L.
, and
Zaw
,
M. M.
,
1999
, “
Effect of Pressure on Hydraulic Conductivity of Endothelial Monolayers: Role of Endothelial Cleft Shear Stress
,”
J. Appl. Physiol.
,
87
(
1
), pp.
261
268
.
8.
Jaffrin
,
M. J.
,
Reach
,
G.
, and
Notelet
,
D.
,
1988
, “
Analysis of Ultrafiltration and Mass Transfer in Bioartificial Pancreas
,”
ASME J. Biomech. Eng.
,
110
, pp.
1
10
.
9.
Ho¨niger
,
J.
,
Darquy
,
S.
,
Reach
,
G.
,
Muscat
,
E.
,
Thomas
,
M.
, and
Collier
,
C.
,
1994
, “
Preliminary Report on Cell Encapsulation in a Hydrogel Made of a Biocompatible Material, AN69, for the Development of a Bioartificial Pancreas
,”
Int. J. Artif. Organs
,
17
, pp.
46
52
.
10.
Artmann
,
G. M.
,
1995
, “
Microscopic Photometric Quantification of Stiffness and Relaxation Time of Red Blood Cells in a Flow Chamber
,”
Biorheology
,
32
, 5, pp.
553
570
.
11.
Ofsthun
,
N. J.
, and
Leypoldt
,
J. K.
,
1995
, “
Ultrafiltration and Backfiltration During Hemodialysis
,”
Int. J. Artif. Organs
,
19
, 11, pp.
1143
1161
.
12.
Lew
,
H. S.
, and
Fung
,
Y. C.
,
1969
, “
Flow in an Occluded Circular Cylindrical Tube With Permeable Wall
,”
J. Appl. Mathematics and Physics
,
20
, pp.
750
766
.
13.
Deen, W. M., 1998, Analysis of Transport Phenomena, Oxford University Press, New York, pp. 274–275.
14.
Mulvihill
,
J.
,
Cazenave
,
J-P.
,
Mazzucotelli
,
J-P.
,
Crost
,
T.
,
Collier
,
C.
,
Renaux
,
J-L.
, and
Pusineri
,
C.
,
1992
, “
Minimodule Dialyser for Quantitative Ex Vivo Evaluation of Membrane Haemocompatibility in Humans: Comparison of Acrylonitrile Copolymer, Cuprophan and Polysulfone Hollow Fibers
,”
Biomaterials
,
13
, 8, pp.
527
535
.
15.
Lundberg
,
L.
,
Stegmayr
,
B. G.
, and
Wehle
,
B.
,
1994
, “
Backdiffusion or Bicarbonate May Stimulate Complement Activation During Haemodialysis With Low-Flux Membranes
,”
Int. J. Artif. Organs
,
17
, 3, pp.
131
136
.
16.
Sill, H. W., Chang, Y. S., Artman, J. R., Frangos, J. A., Hollis, T. H., and Tarbell, J. M., 1995, “Shear Stress Increases Hydraulic Conductivity of Cultured Endothelial Monolayers,” Am. J. Physiol., 268, (Heart Circ.Physiol. 37), H535–H543.
You do not currently have access to this content.