The importance and priority of specific micro-structural and mechanical design parameters must be established to effectively engineer scaffolds (biomaterials) that mimic the extracellular matrix (ECM) environment of cells and have clinical applications as tissue substitutes. In this study, three-dimensional (3-D) matrices were prepared from type I collagen, the predominant compositional and structural component of connective tissue ECMs, and structural-mechanical relationships were studied. Polymerization conditions, including collagen concentration (0.3–3 mg/mL) and pH (6–9), were varied to obtain matrices of collagen fibrils with different microstructures. Confocal reflection microscopy was used to assess specific micro-structural features (e.g., diameter and length) and organization of component fibrils in 3-D. Microstructural analyses revealed that changes in collagen concentration affected fibril density while maintaining a relatively constant fibril diameter. On the other hand, both fibril length and diameter were affected by the pH of the polymerization reaction. Mechanically, all matrices exhibited a similar stress-strain curve with identifiable “toe,” “linear,” and “failure” regions. However, the linear modulus and failure stress increased with collagen concentration and were correlated with an increase in fibril density. Additionally, both the linear modulus and failure stress showed an increase with pH, which was related to an increased fibril length and a decreased fibril diameter. The tensile mechanical properties of the collagen matrices also showed strain rate dependence. Such fundamental information regarding the 3-D microstructural-mechanical properties of the ECM and its component molecules are important to our overall understanding of cell-ECM interactions (e.g., mechanotransduction) and the development of novel strategies for tissue repair and replacement.

1.
Ingber, D., 2000, “Mechanical and Chemical Determinants of Tissue Development,” Principles of Tissue Engineering, 2nd Edition, eds., R. P. Lanza et al., Academic Press, Inc., San Diego, CA, pp. 101–110.
2.
Chiquet
,
M.
,
1999
, “
Regulation of Extracellular Gene Expression by Mechanical Stress
,”
Matrix Biology
,
18
, pp.
417
426
.
3.
Bateman, J. F., Lamande, S. R., and Ramshaw, J. A. M., 1996, “Collagen Superfamily,” Extracellular Matrix Vol. 2., Molecular Components and Interaction, ed., W. D. Comper, Harwood Academic Publishers, The Netherlands, pp. 22–67.
4.
Veis, A., and George A., 1994, “Fundamentals of Interstitial Collagen Assembly,” Extracellular Matrix Assembly and Structure, eds., P. D. Urchenco et al., Academic Press, Inc., San Diego, CA, pp. 15–45.
5.
Wood
,
G. C.
, and
Keech
,
M. K.
,
1960
, “
The Formation of Fibrils from Collagen Solutions. The Effect of Experimental Conditions: Kinetic and Electron Microscopic Studies
,”
Biochem. J.
,
75
, pp.
588
598
.
6.
Voytik-Harbin
,
S. L.
,
2001
, “
Three-Dimensional Extracellular Matrix Substrates for Cell Culture
,”
Methods Cell Biol.
,
63
, pp.
561
581
.
7.
Parry
,
D. A.
,
1988
, “
The Molecular and Fibrillar Structure of Collagen and its Relationship to the Mechanical Properties of Connective Tissue
,”
Biophys. Chem.
,
29
, pp.
195
209
.
8.
Yannas
,
I. V.
, and
Burke
,
J. F.
,
1980
, “
Design of an Artificial Skin. I Basic Design Principles
,”
J. Biomed. Mater. Res.
,
14
, pp.
65
81
.
9.
Matsuda
,
K.
,
Suzuki
,
S.
,
Isshiki
,
N.
,
Yoshioka
,
K.
,
Okada
,
T.
, and
Ikada
,
Y.
,
1990
, “
Influence of Glycosaminoglycans on the Collagen Sponge Component of a Bilayer Artificial Skin
,”
Biomaterials
,
11
, pp.
351
355
.
10.
Matsuda
,
K.
,
Suzuki
,
S.
,
Issihiki
,
N.
, and
Ikada
,
Y.
,
1993
, “
Re-freeze Dried Bilayer Artificial Skin
,”
Biomaterials
,
14
, pp.
1030
1035
.
11.
Chen
,
C. S.
,
Yannas
,
I. V.
, and
Spector
,
M.
,
1995
, “
Pore Strain Behavior of Collagen Glycosaminoglycan Analogues of Extracellular Matrix
,”
Biomaterials
,
16
, pp.
777
783
.
12.
Pins
,
G. D.
,
Huang
,
E. K.
,
Christiansen
,
D. L.
, and
Silver
,
F. H.
,
1997
, “
Effects of Static Axial Strain on the Tensile Properties and Failure Mechanisms of Self-Assembled Collagen Fibers
,”
J. Appl. Polym. Sci.
,
63
, pp.
1429
1440
.
13.
Pins
,
G. D.
,
Christiansen
,
D. L.
,
Patel
,
R.
, and
Silver
,
F. H.
,
1997
, “
Self-Assembly of Collagen Fibers. Influence of Fibrillar Alignment and Decorin on Mechanical Properties
,”
Biophys. J.
,
73
, pp.
2164
2172
.
14.
Silver
,
F. H.
,
Christiansen
,
D. L.
,
Snowhill
,
P. B.
, and
Chen
,
Y.
,
2000
, “
Role of Storage on Changes in the Mechanical Properties of Tendon and Self-Assembled Collagen Fibers
,”
Connect. Tissue Res.
,
41
, pp.
155
164
.
15.
Law
,
J. K.
,
Parsons
,
J. R.
,
Silver
,
F. H.
, and
Weiss
,
A. B.
,
1989
, “
An Evaluation of Purified Reconstituted Type I Collagen Fibers
,”
J. Biomed. Mater. Res.
,
23
, pp.
961
977
.
16.
Dunn
,
M. G.
,
Avasarala
,
P. N.
, and
Zawadsky
,
J. P.
,
1993
, “
Optimization of Extruded Collagen Fibers for ACL Reconstruction
,”
J. Biomed. Mater. Res.
,
27
, pp.
1545
1552
.
17.
Christensen
,
D. L.
,
Huang
,
E. K.
, and
Silver
,
F. H.
,
2000
, “
Assembly of Type I Collagen: Fusion of Fibril Subunits and the Influence of Fibril Diameter on Mechanical Properties
,”
Matrix Biology
,
19
, pp.
409
420
.
18.
Miller
,
E. J.
, and
Rhodes
,
E. K.
,
1982
, “
Preparation and Characterization of Different types of Collagen
,”
Methods Enzymol.
,
82
, pp.
33
64
.
19.
O¨zerdem
,
B.
, and
To¨zeren
,
A.
,
1995
, “
Physical Response of Collagen Gels to Tensile Strain
,”
ASME J. Biomech. Eng.
,
117
, pp.
397
401
.
20.
Knapp
,
D. M.
,
Barocas
,
V. H.
, and
Moon
,
A. G.
,
Yoo
,
K.
,
Petzold
,
L. R.
,
Tranquillo
,
R. T.
,
1997
, “
Rheology of Reconstituted Type I Collagen Gel in Confined Compression
,”
J. Rheol.
,
41
, pp.
971
993
.
21.
Osborne
,
C. S.
,
Barbenel
,
J. C.
,
Smith
,
D.
,
Savakis
,
M.
, and
Grant
,
M. H.
,
1998
, “
Investigation into the Tensile Properties of Collagen/Chondroitin-6-sulphate Gels: The Effect of Crosslinking Agents and Diamines
,”
Med. Biol. Eng. Comput.
,
36
, pp.
129
134
.
22.
Hsu
,
S.
,
Jamieson
,
A. M.
, and
Blackwell
,
J.
,
1994
, “
Viscoelastic Studies of Extracellular Matrix Interactions in a Model Native Collagen Gel System
,”
Biorheology
,
31
, pp.
21
36
.
23.
Voytik-Harbin
,
S. L.
,
Rajwa
,
B.
, and
Robinson
,
J. P.
,
2000
, “
3D Imaging of Extracellular Matrix and Extracellular Matrix-Cell Interactions
,”
Methods Cell Biol.
,
63
, pp.
583
597
.
24.
Brightman
,
A. O.
,
Rajwa
,
B. P.
,
Sturgis
,
J. E.
,
McCallister
,
M. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
,
2000
, “
Time-Lapse Confocal Reflection Microscopy of Collagen Fibrillogenesis and Extracellular Matrix Assembly In Vitro
,”
Biopolymers
,
54
, pp.
222
234
.
25.
Kolodney
,
M. S.
, and
Wysolmerski
,
R. B.
,
1992
, “
Isometric Contraction by Fibroblasts and Endothelial Cells in Tissue Culture: A Quantitative Study
,”
J. Cell Biol.
,
117
, pp.
73
82
.
26.
Delvoye
,
P.
,
Wiliquet
,
P.
,
Leveque
,
J. L.
,
Nusgens
,
B. V.
, and
Lapiere
,
C. M.
,
1991
, “
Measurement of Mechanical Forces Generated by Skin Fibroblasts Embedded in a Three Dimensional Collagen Gel
,”
J. Invest. Dermatol.
,
97
, pp.
898
902
.
27.
Benkherourou
,
M.
,
Rochas
,
C.
,
Tracqui
,
P.
,
Tranqui
,
L.
, and
Gume´ry
,
P. Y.
,
1999
, “
Standardization of a Method for Characterizing Low-Concentration Biogels: Elastic Properties of Low Concentration Agarose Gels
,”
ASME J. Biomech. Eng.
,
121
, pp.
184
187
.
28.
Baer
,
E.
,
Cassidy
,
J. J.
, and
Hiltner
,
A.
,
1991
, “
Hierarchical Structure of Collagen Composite Systems
,”
Pure Appl. Chem.
,
63
, pp.
961
973
.
29.
Birk D. E., Silver F. H., and Trelstad R. L., 1991, “Matrix Assembly,” The Cell Biology of the Extracellular Matrix, 2nd Edition, ed., E. D. Hay, Academic Press, Inc., New York, pp. 221.
30.
Voytik-Harbin
,
S. L.
,
Brightman
,
A. O.
,
Waisner
,
B. Z.
,
Robinson
,
J. P.
, and
Lamar
,
C. H.
,
1998
, “
Small Intestinal Submucosa: A Tissue-Derived Extracellular Matrix that Promotes Tissue-Specific Growth and Differentiation of Cells In Vitro
,”
Tissue Eng.
,
4
, pp.
157
174
.
31.
Allen
,
T. D.
,
Schor
,
S. L.
, and
Schor
,
A. M.
,
1984
, “
An Ultrastructural Review of Collagen Gels, a Model System for Cell-Matrix, Cell-Basement Membrane and Cell-Cell Interactions
,”
Scan. Electron Microsc.
,
1
, pp.
375
390
.
32.
Abrahams
,
M.
,
1967
, “
Mechanical Behavior of Tendon In Vitro
,”
Med. Biol. Eng.
,
5
, pp.
433
443
.
33.
Diamant
,
J.
,
Keller
,
A.
,
Baer
,
E.
,
Litt
,
M.
, and
Arridge
,
R. G. C.
,
1972
, “
Collagen; Ultrastructure and its Relation to Mechanical Properties as a Function of Aging
,”
Proc. R. Soc. London, Ser. B
,
180
, pp.
293
315
.
34.
Folkhard
,
W. E.
,
Mosler
,
E.
,
Geerken
,
E.
,
Knorzer
,
E.
,
Nemetschek-Gonsler
,
H.
,
Nemetschek
,
T.
, and
Koch
,
M. H.
,
1986
, “
Quantitative Analysis of the Molecular Sliding Mechanism in Native Tendon Collagen—Time-Resolved Dynamic Studies Using Synchrotron Radiation
,”
Int. J. Biol. Macromol.
,
9
, pp.
169
175
.
35.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York, NY.
36.
Haut
,
R. C.
, and
Little
,
R. W.
,
1972
, “
A Constitutive Equation for Collagen Fibers
,”
J. Biomech.
,
5
, pp.
423
430
.
37.
Kato
,
Y. P.
,
Christiansen
,
D. L.
,
Hahn
,
R. A.
,
Shieh
,
S-J.
,
Goldstein
,
J. D.
, and
Silver
,
F. H.
,
1989
, “
Mechanical Properties of Collagen Fibers: A Comparison of Reconstituted and Rat Tail Tendon Fibers
,”
Biomaterials
,
10
, pp.
38
42
.
38.
Comper
,
W. D.
, and
Veis
,
A.
,
1977
, “
Characterization of Nuclei in In Vitro Collagen Fibril Formation
,”
Biopolymers
,
16
, pp.
2133
2142
.
39.
Snowden
,
J. M.
, and
Swann
,
D. A.
,
1979
, “
The Formation and Thermal Stability of In Vitro Assemble Fibrils From Acid-Soluble and Pepsin Treated Collagens
,”
Biochim. Biophys. Acta
,
580
, pp.
372
381
.
40.
Callister, W. D., Jr., 1994, Material Science and Engineering: An Introduction, John Wiley and Sons, New York, NY.
You do not currently have access to this content.