A multilevel finite element approach is applied to predict local cell deformations in engineered tissue constructs. Cell deformations are predicted from detailed nonlinear FE analysis of the microstructure, consisting of an arrangement of cells embedded in matrix material. Effective macroscopic tissue behavior is derived by a computational homogenization procedure. To illustrate this approach, we simulated the compression of a skeletal muscle tissue construct and studied the influence of microstructural heterogeneity on local cell deformations. Results show that heterogeneity has a profound impact on local cell deformations, which highly exceed macroscopic deformations. Moreover, microstructural heterogeneity and the presence of neighboring cells leads to complex cell shapes and causes non-uniform deformations within a cell.

1.
Guilak
,
F.
, and
Mow
,
V. C.
,
2000
, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
,
33
, No.
12
, pp.
1663
1673
.
2.
Wu
,
J. Z.
, and
Herzog
,
W.
,
2000
, “
Finite Element Simulation of Location and Time-Dependent Mechanical Behavior of Chondrocytes in Unconfined Compression Tests
,”
Ann. Biomed. Eng.
,
28
, pp.
318
330
.
3.
Jain
,
M. K.
,
Chernomorsky
,
A.
,
Silver
,
F.
, et al.
,
1988
, “
Material Properties of Living Soft Tissue Composites
,”
J. Biom. Mater. Res.: Applied Biomaterials
,
22
, No.
A3
, pp.
311
326
.
4.
Huang
,
D.
,
Chang
,
T. R.
,
Aggarwal
,
A.
, et al.
,
1993
, “
Mechanisms and Dynamics of Mechanical Strenghtening in Ligament-Equivalent Fibroblast-Populated Collagen Matrices
,”
Ann. Biomed. Eng.
,
21
, pp.
289
305
.
5.
Knapp
,
D. M.
,
Tower
,
T. T.
,
Tranquillo
,
R. T.
, et al.
,
1999
, “
Estimation of Cell Traction and Migration in an Isometric Cell Traction Assay
,”
AIChE J.
,
45
, No.
12
, pp.
2628
2640
.
6.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
,
1999
, “
Modelling of Location and Time-Dependent Deformation of Chondrocytes During Cartilage Loading
,”
J. Biomech.
,
32
, No.
6
, pp.
563
572
.
7.
Eshelby, J. D., 1956, “The Continuum Theory of Lattice Defects,” F. Setz, and D. Turnbull, eds., in Progress in Solid State Physics, New York, Academic Press, 3, pp. 79.
8.
Christensen, R. M., 1991, Mechanics of Composite Materials, S. I. Wiley Interscience.
9.
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
,
1997
, “
A Finite Element Solution for the Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Effect of Contact Guidance on Isometric Cell Traction Measurement
,”
J. Biomech. Eng.
,
119
, No.
3
, pp.
261
268
.
10.
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
,
1997
, “
An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance
,”
J. Biomech. Eng.
,
119
, No.
2
, pp.
137
145
.
11.
Zahalak
,
G. I.
,
Wagenseil
,
J. E.
,
Wakatsuki
,
T.
, et al.
,
2000
, “
A Cell-Based Constitutive Relation for Bio-Artificial Tissues
,”
Biophys. J.
,
79
, No.
5
, pp.
2369
2381
.
12.
Smit
,
R. J. M.
,
Brekelmans
,
W. A. M.
, and
Meijer
,
H. E. H.
,
1998
, “
Prediction of the Mechanical Behavior of Nonlinear Heterogeneous Systems by Multi-Level Finite Element Modeling
,”
Comp. Methods Appl. Mech. Eng.
155
, No.
1-2
, pp.
181
192
.
13.
Kouznetsova
,
V.
,
Brekelmans
,
W. A. M.
, and
Baaijens
,
F. P. T.
,
2001
, “
Approach to Micro-Macro Modeling of Heterogeneous Materials
,”
Computational Mechanics
,
27
, No.
1
, pp.
37
48
.
14.
Nagtegaal
,
J. C.
,
1982
, “
On the Implementation of Inelastic Constiturive Equations With Special Reference to Large Deformation Problems
,”
Comp. Methods Appl. Mech. Eng.
33
, pp.
469
484
.
15.
Saad
,
Y.
, and
Schultz
,
M. H.
,
1986
, “
GMRES: A Generalized Minimum Residual Algorithm for Solving Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
7
, pp.
856
869
.
16.
Bathe, K. J., 1996, Finite Element Procedures, Prentice Hall, Englewood Cliffs, NJ.
17.
Vandenburgh
,
H. H.
,
Del Tatto
,
M.
Shansky
,
J.
, et al.
,
1996
, “
Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy
,”
Hum. Gene Ther.
,
7
, No.
17
, pp.
2195
2200
.
18.
Bouten
,
C. V.
,
Knight
,
M. M.
,
Lee
,
D. A.
, et al.
,
2001
, “
Compressive Deformation and Damage of Muscle Cell Subpopulations in a Model System
,”
Ann. Biomed. Eng.
,
29
, No.
2
, pp.
153
163
.
19.
Wakatsuki
,
T.
,
Kolodney
,
M. S.
,
Zahalak
,
G. I.
, et al.
,
2000
, “
Cell Mechanics Studied by a Reconstituted Model Tissue
,”
Biophys. J.
,
79
, No.
5
, pp.
2353
2368
.
20.
Umazume
,
Y.
, and
Kasuga
,
N.
,
1984
, “
Radial Stiffness of Frog Skinned Muscle Fibres in Relaxed and Rigor Conditions
,”
Biophys. J.
,
45
, pp.
783
388
.
21.
Knapp
,
D. M.
,
Barocas
,
V. H.
,
Moon
,
A. G.
, et al.
,
1997
, “
Rheology of Reconstituted Type I Collagen Gel in Confined Compression
,”
J. Rheology
,
41
, No.
5
, pp.
971
993
.
22.
Harris
,
A. K.
,
Stopak
,
D.
, and
Wild
,
P.
,
1981
, “
Fibroblast Traction As a Mechanism for Collagen Morphogenesis
,”
Nature (London)
,
290
, No.
5803
, pp.
249
251
.
You do not currently have access to this content.