Severe stenosis may cause critical flow and wall mechanical conditions related to artery fatigue, artery compression, and plaque rupture, which leads directly to heart attack and stroke. The exact mechanism involved is not well understood. In this paper, a nonlinear three-dimensional thick-wall model with fluid–wall interactions is introduced to simulate blood flow in carotid arteries with stenosis and to quantify physiological conditions under which wall compression or even collapse may occur. The mechanical properties of the tube wall were selected to match a thick-wall stenosis model made of PVA hydrogel. The experimentally measured nonlinear stress–strain relationship is implemented in the computational model using an incremental linear elasticity approach. The Navier–Stokes equations are used for the fluid model. An incremental boundary iteration method is used to handle the fluid–wall interactions. Our results indicate that severe stenosis causes considerable compressive stress in the tube wall and critical flow conditions such as negative pressure, high shear stress, and flow separation which may be related to artery compression, plaque cap rupture, platelet activation, and thrombus formation. The stress distribution has a very localized pattern and both maximum tensile stress (five times higher than normal average stress) and maximum compressive stress occur inside the stenotic section. Wall deformation, flow rates, and true severities of the stenosis under different pressure conditions are calculated and compared with experimental measurements and reasonable agreement is found.

1.
Burke
,
A. P.
,
Farb
,
A.
,
Malcom
,
G. T.
,
Liang
,
Y. H.
,
Smialek
,
J. E.
, and
Virmani
,
R.
,
1999
, “
Plaque Rupture and Sudden Death Related to Exertion in Men with Coronary Artery Disease
,”
J. Am. Med. Assoc.
,
281
, No.
10
, pp.
921
926
.
2.
Fuster
,
V.
,
Stein
,
B.
,
Ambrose
,
J. A.
,
Badimon
,
L.
,
Badimon
,
J. J.
, and
Chesebro
,
J. H.
,
1990
, “
Atherosclerotic Plaque Rupture and Thrombosis
,”
Circulation
, Supplement II,
82
, No.
3
, pp.
II-47–II-59
II-47–II-59
.
3.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Phillips
,
D. J.
, and
Strandness
, Jr.,
D. E.
,
1985
, “
Hemodynamics of the Normal Human Carotid Bifurcation: in Vitro and in Vivo Studies
,”
Ultrasound Med. Biol.
,
11
, No
1
, pp.
13
26
.
4.
Nerem
,
R. M.
,
1992
, “
Vascular Fluid Mechanics, the Arterial Wall, and Atherosclerosis
,”
ASME J. Biomech. Eng.
,
114
, pp.
274
282
.
5.
Nerem
,
R. M.
,
1993
, “
Hemodynamics and the Vascular Endothelium
,”
ASME J. Biomech. Eng.
,
115
, pp.
510
514
.
6.
Friedman
,
M. H.
,
1993
, “
Arteriosclerosis Research Using Vascular Flow Models: From 2-D Branches to Compliant Replicas
,”
ASME J. Biomech. Eng.
,
115
,
595
601
.
7.
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1993
, “
The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis
,”
ASME J. Biomech. Eng.
,
115
, pp.
588
594
.
8.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
, pp.
399
434
.
9.
Zand
,
T.
,
Majno
,
G.
,
Nunnari
,
J. J.
,
Hoffman
,
A. H.
,
Savilonis
,
B. J.
,
MacWilliams
,
B.
, and
Isabelle
,
J.
,
1991
, “
Lipid Deposition and Intimal Stress and Strain
,”
Am. J. Pathol.
,
139
, pp.
101
113
.
10.
Derafshi, Z., Pritchard, W. F., Sankar, L. N., and Giddens, D. P., 1993, “Computational Study of Fluid Dynamic Effects on Near-Wall Monocyte Behavior,” 1993 Bioengineering Conference Proc., ASME BED-Vol. 24, p. 307.
11.
Gonzales
,
R. S.
, and
Wick
,
T. M.
,
1996
, “
Hemodynamic Modulation of Monocyte Cell Adherence to Vascular Endothelium
,”
Am. J. Pathol.
,
103
, pp.
382
393
.
12.
Cao
,
J.
, and
Rittgers
,
S. E.
,
1998
, “
Particle Motion Within in Vitro Models of Stenosel Internal Carotid and Left Anterior Descending Coronary Arteries
,”
Ann. Biomed. Eng.
,
26
, No.
2
, pp.
190
199
.
13.
Rittgers, S. E., Yu, Y. H., and Strony, J. T., 1998, “Thrombus Formation in Moderate Coronary Stenosis Using 2D-LDA,” Proc. Third World Congress of Biomechanics, p. 201.
14.
Liu
,
S. Q.
,
Yen
,
M.
, and
Fung
,
Y. C.
,
1994
, “
On Measuring the Third Dimension of Cultured Endothelial Cells in Shear Flow
,”
Proc. Natl. Acad. Sci. U.S.A.
,
91
, pp.
8782
8786
.
15.
Wiesner
,
T. F.
,
Berk
,
B. C.
, and
Nerem
,
R. M.
,
1997
, “
A Mathematical Model of the Cytosolic-Free Calcium Response in Endothelial Cells to Fluid Shear Stress
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
, pp.
3726
3731
.
16.
Ziegler
,
T.
,
Alexander
,
R. W.
, and
Nerem
,
R. M.
,
1995
, “
An Endothelial Cell-Smooth Muscle Cell Co-Culture Model for Use in the Investigation of Flow Effects on Vascular Biology
,”
Ann. Biomed. Eng.
,
23
, pp.
216
225
.
17.
Fung, Y. C., 1993, Biomechanics, Mechanical Properties of Living Tissues, 2nd ed., Springer-Verlag, New York.
18.
Fung, Y. C., 1997, Biodynamics, Circulation, 2nd ed., Springer-Verlag, New York.
19.
Fung
,
Y. C.
,
Liu
,
S. Q.
, and
Zhou
,
J. B.
,
1993
, “
Remodeling of the Constitutive Equation While a Tissue Remodels Itself Under Stress
,”
ASME J. Biomech. Eng.
,
115
, No.
4B
, pp.
453
459
.
20.
Liu
,
S. Q.
, and
Fung
,
Y. C.
,
1996
, “
Indicial Functions of Arterial Remodeling in Response to Locally Altered Blood Pressure
,”
Am. J. Physiol.
,
270
, pp.
H1323–H1333
H1323–H1333
.
21.
Fry
,
D. L.
,
1968
, “
Acute Vascular Endothelial Changes Associated With Increased Blood Velocity Gradients
,”
Circ. Res.
,
22
, pp.
165
197
.
22.
Ramstack
,
J. M.
,
Zuckerman
,
L.
, and
Mockros
,
L. F.
,
1979
, “
Shear Induced Activation of Platelets
,”
J. Biomech.
,
12
, pp.
113
125
.
23.
Bathe
,
M.
, and
Kamm
,
R. D.
,
1999
, “
A Fluid-Structure Interaction Finite Element Analysis of Pulsatile Blood Flow through a Compliant Stenotic Artery
,”
ASME J. Biomech. Eng.
,
121
, pp.
361
369
.
24.
Tang
,
D.
,
Yang
,
J.
,
Yang
,
C.
, and
Ku
,
D. N.
,
1999
, “
A Nonlinear Axisymmetric Model With Fluid-Wall Interactions for Viscous Flows in Stenotic Elastic Tubes
,”
ASME J. Biomech. Eng.
,
121
, pp.
494
501
.
25.
Wootton
,
D. M.
, and
Ku
,
D. N.
,
1999
, “
Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis
,”
Annu. Rev. Biomed. Eng.
,
1
, pp.
299
329
.
26.
Davies
,
M. J.
, and
Thomas
,
A. C.
,
1985
, “
Plaque Fissuring—The Cause of Acute Myocardial Infarction, Sudden Ischemic Death, and Crecendo Angina
,”
Br. Heart J.
,
53
, pp.
363
373
.
27.
Yamaguchi, T., Kobayashi, T., and Liu, H., 1998, “Fluid–Wall Interactions in the Collapse and Ablation of an Atheromatous Plaque in Coronary Arteries,” Proc. Third World Congress of Biomechanics, p. 20b.
28.
Yamaguchi, T., Nakayama T., and Kobayashi, T., 1996, “Computations of the Wall Mechanical Response Under Unsteady Flows in Arterial Diseases,” 1996 Advances in Bioengineering, ASME BED-Vol. 33, pp. 369–370.
29.
Yamaguchi, T., Furuta, N., Nakayama, T., and Kobayashi, T., 1995, “Computations of the Fluid and Wall Mechanical Interactions in Arterial Diseases,” 1996 Advances in Bioengineering, ASME BED-Vol. 31, pp. 197–198.
30.
Tang
,
D.
,
Yang
,
C.
,
Huang
,
Y.
, and
Ku
,
D. N.
,
1999
, “
Wall Stress and Strain Analysis Using a 3-D Thick-Wall Model With Fluid-Structure Interactions for Blood Flow in Carotid Arteries With Stenoses
,”
Comput. Struct.
,
72
, pp.
341
356
.
31.
Tang
,
D.
,
Yang
,
C.
, and
Ku
,
D. N.
,
1999
, “
A 3-D Thin-Wall Model With Flow-Structure Interactions for Blood Flow in Carotid Arteries With Symmetric and Asymmetric Stenoses
,”
Comput. Struct.
,
72
, pp.
357
377
.
32.
Biz, S., 1993, “Flow in Collapsible Stenoses: An Experimental Study,” M.S. Thesis, Georgia Institute of Technology, Atlanta, GA.
33.
Hayashi
,
K.
,
1993
, “
Experimental Approaches on Measuring the Mechanical Properties and Constitutive Laws of Arterial Walls
,”
ASME J. Biomech. Eng.
,
115
, pp.
481
488
.
34.
Kamm
,
K. D.
, and
Shapiro
,
A. H.
,
1979
, “
Unsteady Flow in a Collapsible Tube Subjected to External Pressure or Body Force
,”
J. Fluid. Mech.
,
95
, pp.
1
78
.
35.
Kleiber, M., 1998, Handbook of Computational Solid Mechanics, Springer-Verlag, New York.
36.
Vaishnav
,
R. N.
, and
Vossoughi
,
J.
,
1984
, “
Incremental Formulations in Vascular Mechanics
,”
ASME J. Biomech. Eng.
,
106
, pp.
105
111
.
37.
Kobayashi, S., Biz, S., and Ku, D. N., 2001, “Flow and Compression in Collapsible Stenosis Models of Arterial Disease,” ASME J. Biomech. Eng., submitted.
38.
Kobayashi, S., Tang, D., and Ku, D. N., 1998, “Pulsatile Flow Through a Stenotic Collapsible Tube,” Proc. 76th JSME Fall Annual Meeting, pp. 265–266.
39.
Hughes
,
T. J. R.
,
Liu
,
W. K.
, and
Zimmermann
,
X. X.
,
1981
, “
Lagrangian–Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
,
29
, pp.
329
349
.
40.
Ramaswamy
,
B.
, and
Kawahara
,
M.
,
1987
, “
Arbitrary Lagrangian–Eulerian Finite Element Method for Unsteady, Convective, Incompressible Viscous Free Surface Fluid Flow
,”
Int. J. Numer. Methods Fluids
,
7
, pp.
1053
1075
.
41.
Liszka
,
T.
, and
Orkisz
,
J.
,
1980
, “
The Finite Difference Method at Arbitrary Irregular Grids and Its Application in Applied Mechanics
,”
Comput. Struct.
,
11
, pp.
83
95
.
42.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Taylor & Francis Publishers, New York.
43.
ADINA R & D, Inc., 1995, Theory and Modeling Guide, Watertown, MA.
44.
ADINA R & D, Inc., 1999, ADINA System 7.3 Release Notes.
45.
Bathe, K. J., 1996, Finite Element Procedures, Prentice-Hall, New Jersey.
46.
Ferziger, J. H., and Peric´, M., 1996, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin.
47.
Downing
,
J. M.
, and
Ku
,
D. N.
,
1997
, “
Effects of Frictional Losses and Pulsatile Flow on the Collapse of Stenotic Arteries
,”
ASME J. Biomech. Eng.
,
119
, pp.
317
324
.
You do not currently have access to this content.