Both theoretical and experimental studies of pleural fluid dynamics and lung buoyancy during steady-state, apneic conditions are presented. The theory shows that steady-state, top-to-bottom pleural-liquid flow creates a pressure distribution that opposes lung buoyancy. These two forces may balance, permitting dynamic lung floating, but when they do not, pleural–pleural contact is required. The animal experiments examine pleural-liquid pressure distributions in response to simulated reduced gravity, achieved by lung inflation with perfluorocarbon liquid as compared to air. The resulting decrease in lung buoyancy modifies the force balance in the pleural fluid, which is reflected in its vertical pressure gradient. The data and model show that the decrease in buoyancy with perfluorocarbon inflation causes the vertical pressure gradient to approach hydrostatic. In the microgravity analogue, the pleural pressures would be toward a more uniform distribution, consistent with ventilation studies during space flight. The pleural liquid turnover predicted by the model is computed and found to be comparable to experimental values from the literature. The model provides the flow field, which can be used to develop a full transport theory for molecular and cellular constituents that are found in pleural fluid.

1.
Miserocchi
,
G.
, and
Negrini
,
D.
,
1992
, “
Pleural Lymphatics as Regulators of Pleural Fluid Dynamics
,”
News Physiol. Sci.
,
6
, pp.
153
158
.
2.
Miserocchi
,
G.
,
Negrini
,
D.
, and
Mortola
,
J. P.
,
1986
, “
Comparative Features of Starling-Lymphatic Interaction at the Pleural Level in Mammals
,”
J. Appl. Physiol.
,
56
, pp.
1151
1156
.
3.
Negrini, D., 1995, “Integration of Capillary, Interstitial and Lymphatic Function in the Pleural Space,” in: Interstitium, Connective Tissue and Lymphatics, R. K. Reed, N. G. McHale, J. L. Bert, C. P. Winlove, and G. A. Laine, eds., Portland Press, pp. 283–299.
4.
Lai-Fook
,
S. J.
,
Price
,
D. C.
, and
Staub
,
N. C.
,
1987
, “
Liquid Thickness vs. Vertical Pressure Gradient in a Model of the Pleural Space
,”
J. Appl. Physiol.
,
62
, pp.
1747
1754
.
5.
Miserocchi
,
G.
,
Negrini
,
D.
,
Mariani
,
E.
, and
Passafaro
,
M.
,
1983
, “
Reabsorption of a Saline- and Plasma-Induced Hydrothorax
,”
J. Appl. Physiol.
,
54
, pp.
1574
1588
.
6.
Staub, N. C., Wiener-Kronish, J. P., and Albertine, K. H., 1985, “Transport Through the Pleura,” in: The Pleura in Health and Disease, J. Chre´tien, J. Bignon, and A. Hirsch, eds., New York: Dekker, pp. 169–193.
7.
Miserocchi, G., 1991, “Pleural Pressures and Fluid Transport,” in: The Lung: Scientific Foundations, R. G. Crystal and J. B. West, eds., New York: Raven Press, pp. 885–893.
8.
Broaddus
,
V. C.
,
Wiener-Kronish
,
J. P.
, and
Staub
,
N. C.
,
1990
, “
Clearance of Lung Edema Into the Pleural Space of Volume-Loaded Anesthetized Sheep
,”
J. Appl. Physiol.
,
68
, pp.
2623
2630
.
9.
Negrini
,
D.
,
Venturoli
,
D.
,
Townsley
,
M. I.
, and
Reed
,
R. K.
,
1994
, “
Permeability of Parietal Pleura to Liquid and Proteins
,”
J. Appl. Physiol.
,
76
, pp.
627
663
.
10.
Negrini, D., 1993, “Integration of the Capillary, Interstitial and Lymphatic Function in the Pleural Space,” Abst. No. 266.3. Proc. XXXII Cong. Internat. Union Physiol. Sci.
11.
Lai-Fook
,
S. J.
,
Brown
,
L. V.
,
Maudgalya
,
V. S.
,
Knapp
,
C. F.
, and
Ganesan
,
S.
,
1991
, “
Effect of Increased Acceleration on Regional Pleural Pressure in Dogs
,”
J. Appl. Physiol.
,
71
, pp.
611
619
.
12.
Guy
,
H. J. B.
,
Prisk
,
G. K.
,
Elliott
,
A. R.
,
Deutschman
, III,
R. A.
, and
West
,
J. B.
,
1994
, “
Inhomogeneity of Pulmonary Ventilation During Sustained Microgravity as Determined by Single-Breath Washouts
,”
J. Appl. Physiol.
,
76
, pp.
1719
1729
.
13.
Hills
,
B. A.
,
1992
, “
Graphite-like Lubrication of Mesothelium by Oligolamellar Pleural Surfactant
,”
J. Appl. Physiol.
,
73
, pp.
1034
1039
.
14.
Mariassy
,
A. T.
, and
Wheeldon
,
E. B.
,
1985
, “
The Pleura: A Combined Light Microscopic, Scanning and Transmission Electron Microscopic Study in the Sheep. I. Normal Pleura
,”
Exp. Lung Res.
,
4
, pp.
293
313
.
15.
Lai-Fook
,
S. J.
, and
Kaplowitz
,
M. R.
,
1985
, “
Pleural Space Thickness In Situ by Light Microscopy in Five Mammalian Species
,”
J. Appl. Physiol.
,
59
, pp.
603
610
.
16.
Albertine
,
K. J.
,
Weiner-Kronish
,
J. P.
,
Bastacky
,
J.
, and
Staub
,
N. C.
,
1991
, “
No Evidence for Mesothelial Cell Contact Across the Costal Pleural Space of Sheep
,”
J. Appl. Physiol.
,
70
, pp.
123
134
.
17.
Grotberg
,
J. B.
, and
Glucksberg
,
M. R.
,
1994
, “
A Buoyancy-Driven Squeeze-Film Model of Intrapleural Fluid Dynamics: Basic Concepts
,”
J. Appl. Physiol.
,
77
, pp.
1555
1561
.
18.
Urmey
,
W. F.
,
Troyer
,
A. D.
,
Kelly
,
K. B.
, and
Loring
,
S. H.
,
1988
, “
Pleural Pressures Increases During Inspiration in the Zone of Apposition of Diaphragm to Rib Cage
,”
J. Appl. Physiol.
,
65
, pp.
2207
2212
.
19.
Goodman, G., 1985, The Pharmacological Basis of Therapeutics, MacMillan Publishing Company, New York.
20.
Mates
,
E. A.
,
Jackson
,
J. C.
,
Hildebrandt
,
J.
,
Truog
,
W. E.
,
Standaert
,
T. A.
, and
Hlastala
,
M. P.
,
1994
, “
Respiratory Gas Exchange and Inert Gas Retention During Partial Liquid Ventilation
,”
Adv. Exp. Med. Biol.
,
361
, pp.
427
435
.
21.
Leach
,
C. L.
,
Greenspan
,
J. S.
,
Rubenstein
,
S. D.
,
Shaffer
,
T. H.
,
Wolfson
,
M. R.
,
Jackson
,
J. C.
,
DeLemos
,
R.
, and
Fuhrman
,
B. P.
,
1996
, “
Partial Liquid Ventilation With Perflubron in Premature Infants With Severe Respiratory Distress Syndrome. The LiquiVent Study Group [see comments]
,”
N. Engl. J. Med.
,
335
, pp.
761
767
.
22.
Tutuncu
,
A. S.
,
Akpir
,
K.
,
Mulder
,
P.
,
Erdmann
,
W.
, and
Lachmann
,
B.
,
1993
, “
Intratracheal Perfluorocarbon Administration as an Aid in the Ventilatory Management of Respiratory Distress Syndrome
,”
Anesthesiology
,
79
, pp.
1083
1093
.
23.
Jackson
,
J. C.
,
Standaert
,
T. A.
,
Truog
,
W. E.
, and
Hodson
,
W. A.
,
1994
, “
Full-Tidal Liquid Ventilation With Perfluorocarbon for Prevention of Lung Injury in Newborn Non-human Primates
,”
Artif. Cells Blood Substit Immobil Biotechnol.
,
22
, pp.
1121
1132
.
24.
Hirschl
,
R. B.
,
Parent
,
A.
,
Tooley
,
R.
,
Shaffer
,
T.
,
Wolfson
,
M.
, and
Bartlett
,
R. H.
,
1994
, “
Lung Management With Perfluorocarbon Liquid Ventilation Improves Pulmonary Function and Gas Exchange During Extracorporeal Membrane Oxygenation (ECMO)
,”
Artif. Cells Blood Substit. Immobil. Biotechnol.
,
22
, pp.
1389
1396
.
25.
Negrini
,
D.
,
Capelli
,
C.
,
Morini
,
M.
, and
Miserocchi
,
G.
,
1987
, “
Gravity-Dependent Distribution of Parietal Subpleural Interstitial Pressure
,”
J. Appl. Physiol.
,
63
, pp.
1912
1918
.
26.
Negrini
,
D.
, and
Miserocchi
,
G.
,
1989
, “
Size-Related Differences in Parietal Extrapleural and Pleural Liquid Pressure Distribution
,”
J. Appl. Physiol.
,
67
, pp.
1967
1972
.
27.
Miserocchi
,
G.
,
Kelly
,
S.
, and
Negrini
,
D.
,
1988
, “
Pleural and Extrapleural Interstitial Liquid Pressure Measured by Cannulas and Micropipettes
,”
J. Appl. Physiol.
,
65
, pp.
555
562
.
28.
Negrini
,
D.
,
Townsley
,
M. I.
, and
Taylor
,
A. E.
,
1990
, “
Hydraulic Conductivity of Canine Parietal Pleura In Vivo
,”
J. Appl. Physiol.
,
69
, pp.
438
442
.
29.
Miserocchi
,
G.
,
Venturoli
,
D.
,
Negrini
,
D.
, and
Fabbro
,
M. D.
,
1993
, “
Model of Pleural Fluid Turnover
,”
J. Appl. Physiol.
,
75
, pp.
1798
1806
.
30.
Butler
,
J. P.
,
Huang
,
J.
,
Loring
,
S. H.
,
Lai-Fook
,
S. J.
,
Wang
,
P. M.
, and
Wilson
,
T. A.
,
1995
, “
Model for a Pump That Drives Circulation of Pleural Fluid
,”
J. Appl. Physiol.
,
78
, pp.
23
29
.
31.
Wang
,
P. M.
, and
Lai-Fook
,
S. J.
,
1994
, “
Effects of Mechanical Ventilation on Pleural Liquid Dynamics in Rabbits
,”
Ann. Biomed. Eng.
,
22
, p.
11
11
.
32.
Waters
,
C. M.
,
Glucksberg
,
M. R.
,
Depaola
,
N.
,
Chang
,
J. L.
, and
Grotberg
,
J. B.
,
1996
, “
Shear Stress Alters Pleural Mesothelial Cell Permeability in Culture
,”
J. Appl. Physiol.
,
81
, pp.
448
458
.
33.
Lai-Fook
,
S. J.
, and
Rodarte
,
J. R.
,
1991
, “
Pleural Pressure Distribution and Its Relationship to Lung Volume and Interstitial Pressure
,”
J. Appl. Physiol.
,
70
, pp.
967
978
.
34.
Grotberg
,
J.
,
Haber
,
R.
, and
Glucksberg
,
M.
,
1996
, “
An Extended Model of Intrapleural Fluid Flow and Transport
,”
FASEB J.
,
10
, p.
A806
A806
.
35.
Allen
,
S. J.
,
Fraser
,
R. E.
,
Laurent
,
U. B. G.
,
Reed
,
R. K.
, and
Laurent
,
T. C.
,
1992
, “
Turnover of Hyaluronan in the Rabbit Pleural Space
,”
J. Appl. Physiol.
,
73
, pp.
1457
1460
.
36.
Agostoni
,
E.
, and
Zocchi
,
L.
,
1990
, “
Solute-Coupled Liquid Absorption From the Pleural Space
,”
Respir. Physiol.
,
81
, pp.
19
27
.
37.
Bermudez
,
E.
,
Everitt
,
J.
, and
Walker
,
C.
,
1990
, “
Expression of Growth Factor and Growth Factor Receptor RNA in Rat Pleural Mesothelial Cells in Culture
,”
Exp. Cell Res.
,
190
, pp.
91
98
.
38.
Waters
,
C. M.
,
Chang
,
J. Y.
,
Glucksberg
,
M. R.
,
DePaola
,
N.
, and
Grotberg
,
J. B.
,
1997
, “
Mechanical Forces Alter Growth Factor Release by Pleural Mesothelial Cells
,”
Am. J. Physiol.-Lung Cell. Mol. Physiol.
,
16
, pp.
L552–L557
L552–L557
.
39.
Kuwahara
,
M.
,
Kuwahara
,
M.
, and
Suzuki
,
N.
,
1992
, “
Production of Endothelin-1 and Big-Endothelin-1 by Pleural Mesothelial Cells
,”
FEBS Lett.
,
298
, pp.
21
24
.
40.
DePaola
,
N.
,
Waters
,
C. M.
,
Glucksberg
,
M. R.
, and
Grotberg
,
J. B.
,
1995
, “
Shear Stress Stimulates Prostacyclin Production by Cultured Pleural Mesothelial Cells
,”
FASEB J.
,
9
, p.
A717
A717
.
41.
Charlwood
,
P. A.
,
1952
, “
Sedimentation and Diffusion of Human Albumins
,”
Biochem. J.
,
51
, pp.
113
118
.
42.
Cussler, E. L., 1984, Diffusion Mass Transfer in Fluid Systems, Cambridge University Press, Cambridge.
43.
Akeley
,
D. F.
, and
Gosting
,
L. J.
,
1953
, “
Diffusion of Mixed Solutes With the Guoy Diffusiometer
,”
J. Am. Chem. Soc.
,
75
, pp.
5685
5696
.
You do not currently have access to this content.