Endothelial cells in blood vessels are exposed to blood flow and thus fluid shear stress. In arterial bifurcations and stenoses, disturbed flow causes zones of recirculation and stagnation, which are associated with both spatial and temporal gradients of shear stress. Such gradients have been linked to the generation of atherosclerotic plaques. For in-vitro studies of endothelial cell responses, the sudden-expansion flow chamber has been widely used and described. A two-dimensional numerical simulation of the onset phase of flow through the chamber was performed. The wall shear stress action on the bottom plate was computed as a function of time and distance from the sudden expansion. The results showed that depending on the time for the flow to be established, significant temporal gradients occurred close to the second stagnation point of flow. Slowly ramping the flow over 15 s instead of 200 ms reduces the temporal gradients by a factor of 300, while spatial gradients are reduced by 23 percent. Thus, the effects of spatial and temporal gradients can be observed separately. In experiments on endothelial cells, disturbed flow stimulated cell proliferation only when flow onset was sudden. The spatial patterns of proliferation rate match the exposure to temporal gradients. This study provides information on the dynamics of spatial and temporal gradients to which the cells are exposed in a sudden-expansion flow chamber and relates them to changes in the onset phase of flow.

1.
Glagov
,
S.
,
Zarins
,
C.
,
Giddens
,
D. P.
, and
Ku
,
D. N.
,
1988
, “
Hemodynamics and Atherosclerosis. Insights and Perspectives Gained From Studies of Human Arteries
,”
Arch. Pathol. Lab. Med.
,
112
, pp.
1018
1031
.
2.
Davies
,
P. F.
,
Barbee
,
K. A.
,
Volin
,
M. V.
,
Robotewskyj
,
A.
,
Chen
,
J.
,
Joseph
,
L.
,
Griem
,
M. L.
,
Wernick
,
M. N.
,
Jacobs
,
E.
,
Polacek
,
D. C.
,
Depaola
,
N.
, and
Barakat
,
A. I.
,
1999
, “
Spatial Relationships in Early Signaling Events of Flow-Mediated Endothelial Mechanotransduction
,”
Annu. Rev. Physiol.
,
59
, pp.
527
549
.
3.
Davies
,
P. F.
,
Polacek
,
D. C.
,
Handen
,
J. S.
,
Helmke
,
B. P.
, and
Depaola
,
N.
,
1999
, “
A Spatial Approach to Transcriptional Profiling: Mechanotransduction and the Focal Origin of Atherosclerosis
,”
Trends Biotechnol.
,
17
, pp.
347
351
.
4.
Kuchan
,
M. J.
, and
Frangos
,
J. A.
,
1994
, “
Role of Calcium and Calmodulin in Flow-Induced Nitric Oxide Production in Endothelial Cells
,”
Am. J. Physiol.
,
266
, pp.
C628–C636
C628–C636
.
5.
Frangos
,
J. A.
,
Eskin
,
S. G.
,
Mcintire
,
L. V.
, and
Ives
,
C. L.
,
1985
, “
Flow Effects on Prostacyclin Production by Cultured Human Endothelial Cells
,”
Science
,
227
, pp.
1477
1479
.
6.
Levesque
,
M. J.
,
Nerem
,
R. M.
, and
Sprague
,
E. A.
,
1990
, “
Vascular Endothelial Cell Proliferation in Culture and the Influence of Flow
,”
Biomaterials
,
11
, pp.
702
707
.
7.
Chiu
,
J. J.
,
Wang
,
D. L.
,
Chien
,
S.
,
Skalak
,
R.
, and
Usami
,
S.
,
1998
, “
Effects of Disturbed Flow on Endothelial Cells
,”
ASME J. Biomech. Eng.
,
120
, pp.
2
8
.
8.
Depaola
,
N.
,
Gimbrone
,
M. A.
, Jr.
,
Davies
,
P. F.
, and
Dewey
,
C. F.
, Jr.
,
1992
, “
Vascular Endothelium Responds to Fluid Shear Stress Gradients
,”
Arterioscler. Thromb.
,
12
, pp.
1254
1257
.
9.
Ojha
,
M.
,
1994
, “
Wall Shear Stress Temporal Gradient and Anastomotic Intimal Hyperplasia
,”
Circ. Res.
,
74
, pp.
1227
1231
.
10.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis
5
,
293
302
.
11.
Bao
,
X.
,
Lu
,
C.
, and
Frangos
,
J. A.
,
1999
, “
Temporal Gradient in Shear but Not Steady Shear Stress Induces PDGF-A and MCP-1 Expression in Endothelial Cells: Role of NO, NF Kappa B, and Egr-1
,”
Arterioscler., Thromb., Vasc. Biol.
,
19
, pp.
996
1003
.
12.
Bao
,
X.
,
Clark
,
C. B.
, and
Frangos
,
J. A.
,
2000
, “
Temporal Gradient in Shear-Induced Signaling Pathway: Involvement of MAP Kinase, C-Fos, and Connexin43
,”
Am. J. Physiol.
,
278
, pp.
H1598–H1605
H1598–H1605
.
13.
Moore
,
J. E.
, Jr.
,
Xu
,
C.
,
Glagov
,
S.
,
Zarins
,
C. K.
, and
Ku
,
D. N.
,
1994
, “
Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis
,”
Atherosclerosis
,
110
, pp.
225
240
.
14.
Truskey
,
G. A.
,
Barber
,
K. M.
,
Robey
,
T. C.
,
Olivier
,
L. A.
, and
Combs
,
M. P.
,
1995
, “
Characterization of a Sudden Expansion Flow Chamber to Study the Response of Endothelium to Flow Recirculation
,”
ASME J. Biomech. Eng.
,
117
, pp.
203
210
.
15.
Durst
,
F.
, and
Pereira
,
J. C. F.
,
1988
, “
Time-Dependent Laminar Backward-Facing Step Flow in a Two-Dimensional Duct
,”
ASME J. Fluids Eng.
,
110
, pp.
289
296
.
16.
Armaly
,
B. F.
,
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Scho¨nung
,
B.
,
1982
, “
Experimental and Theoretical Investigation of Backward-Facing Step-Flow
,”
J. Fluid Mech.
,
127
, pp.
473
496
.
17.
Kaiktsis
,
L.
,
Karniadakis
,
G. E.
, and
Orszag
,
S. A.
,
1991
, “
Onset of Three-Dimensionality, Equilibria, and Early Transition in Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
,
231
, pp.
501
528
.
18.
Frangos
,
J. A.
,
Mcintire
,
L. V.
, and
Eskin
,
S. G.
,
1988
, “
Shear Stress Induced Stimulation of Mammlian Cell Metabolism
,”
Biotechnol. Bioeng.
,
32
, pp.
1053
1060
.
19.
White
,
C. W.
,
Haidekker
,
M. A.
, and
Frangos
,
J. A.
,
2001
, “
Temporal Gradients in Shear, but Not Spatial Gradients, Stimulate Endothelial Cell Proliferation
,”
Circulation
,
103
, pp.
2508
2513
.
20.
Wright
,
H. P.
,
1972
, “
Mitosis Patterns in Aortic Endothelium
,”
Atherosclerosis
,
15
, pp.
93
100
.
21.
Depaola
,
N.
,
Davies
,
P. F.
,
Pritchard
,
W. F.
, Jr.
,
Florez
,
L.
,
Harbeck
,
N.
, and
Polacek
,
D. C.
,
1999
, “
Spatial and Temporal Regulation of Gap Junction Connexin43 in Vascular Endothelial Cells Exposed to Controlled Disturbed Flows in Vitro
,”
Proc. Natl. Acad. Sci. U.S.A.
,
96
, pp.
3154
3159
.
22.
Nagel
,
T.
,
Resnick
,
N.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
, Jr.,
M. A.
,
1999
, “
Vascular Endothelial Cells Respond to Spatial Gradients in Fluid Shear Stress by Enhanced Activation of Transcription Factors
,”
Arterioscler., Thromb., Vasc. Biol.
,
19
, pp.
1825
1834
.
23.
Long
,
Q.
,
Xu
,
X. Y.
,
Ariff
,
B.
,
Thom
,
S. A.
,
Hughes
,
A. D.
, and
Stanton
,
A. V.
,
2000
, “
Reconstruction of Blood Flow Patterns in a Human Carotid Bifurcation: a Combined CFD and MRI Study
,”
J. Magn. Reson Imaging
,
11
, pp.
299
311
.
24.
Pedersen
,
E. M.
,
Agerbaek
,
M.
,
Kristensen
,
I. B.
, and
Yoganathan
,
A. P.
,
1997
, “
Wall Shear Stress and Early Atherosclerotic Lesions in the Abdominal Aorta in Young Adults
,”
Eur. J. Vasc. Endovasc Surg.
,
13
, pp.
443
451
.
25.
Ziegler
,
T.
, and
Nerem
,
R. M.
,
1994
, “
Effect of Flow on the Process of Endothelial Cell Division
,”
Arterioscler. Thromb.
,
14
, pp.
636
643
.
26.
Lutz
,
R. J.
,
Cannon
,
J. N.
,
Bischoff
,
K. B.
,
Dedrick
,
R. L.
,
Stiles
,
R. K.
, and
Fry
,
D. L.
,
1977
, “
Wall Shear Stress Distribution in a Model Canine Artery During Steady Flow
,”
Circ. Res.
,
41
, pp.
391
399
.
27.
Tardy
,
Y.
,
Resnick
,
N.
,
Nagel
,
T.
,
Gimbrone
, Jr.,
M. A.
, and
Dewey
,
C. F.
Jr.
,
1997
, “
Shear Stress Gradients Remodel Endothelial Monolayers in Vitro Via a Cell Proliferation-Migration-Loss Cycle
,”
Arterioscler., Thromb., Vasc. Biol.
,
17
, pp.
3102
3106
.
28.
Griebel, M., Dornseifer, T., and Neunhoeffer, T., 1998, “Numerical Simulations in Fluid Dynamics,” SIAM, Philadelphia.
29.
Young
,
D. F.
,
1979
, “
Fluid Mechanics of Arterial Stenoses
,”
ASME J. Biomech. Eng.
,
101
, pp.
157
175
.
30.
Calvo
,
W. J.
,
Hajduczok
,
G.
,
Russell
,
J. A.
, and
Diamond
,
S. L.
,
1999
, “
Inhibition of Nitric Oxide but Not Prostacyclin Prevents Poststenotic Dilatation in Rabbit Femoral Artery
,”
Circulation
,
99
, pp.
1069
1076
.
31.
Yongchareon
,
W.
, and
Young
,
D. F.
,
1979
, “
Initiation of Turbulence in Models of Arterial Stenoses
,”
J. Biomech.
,
12
, pp.
185
196
.
You do not currently have access to this content.