A computational simulation method for three-dimensional trabecular surface remodeling was proposed, using voxel finite element models of cancellous bone, and was applied to the experimental data. In the simulation, the trabecular microstructure was modeled based on digital images, and its morphological changes due to surface movement at the trabecular level were directly expressed by removing/adding the voxel elements from/to the trabecular surface. A remodeling simulation at the single trabecular level under uniaxial compressive loading demonstrated smooth morphological changes even though the trabeculae were modeled with discrete voxel elements. Moreover, the trabecular axis rotated toward the loading direction with increasing stiffness, simulating functional adaptation to the applied load. In the remodeling simulation at the trabecular structural level, a cancellous bone cube was modeled using a digital image obtained by microcomputed tomography (μCT), and was uniaxially compressed. As a result, the apparent stiffness against the applied load increased by remodeling, in which the trabeculae reoriented to the loading direction. In addition, changes in the structural indices of the trabecular architecture coincided qualitatively with previously published experimental observations. Through these studies, it was demonstrated that the newly proposed voxel simulation technique enables us to simulate the trabecular surface remodeling and to compare the results obtained using this technique with the in vivo experimental data in the investigation of the adaptive bone remodeling phenomenon.

1.
Cowin
,
S. C.
,
1993
, “
Bone Stress Adaptation Models
,”
ASME J. Biomech. Eng.
,
115
, pp.
528
533
.
2.
Huiskes
,
R.
, and
Hollister
,
S. J.
,
1993
, “
From Structure to Process, From Organ to Cell: Recent Developments of FE-Analysis in Orthopaedic Biomechanics
,”
ASME J. Biomech. Eng.
,
115
, pp.
520
527
.
3.
Cowin
,
S. C.
,
Moss-Salentijn
,
L.
, and
Moss
,
M. L.
,
1991
, “
Candidates for the Mechanosensory System in Bone
,”
ASME J. Biomech. Eng.
,
113
, pp.
191
197
.
4.
Guldberg
,
R. E.
,
Richards
,
M.
,
Caldwell
,
N. J.
,
Kuelske
,
C. L.
, and
Goldstein
,
S. A.
,
1997
, “
Trabecular Bone Adaptation to Variations in Porous-Coated Implant Topology
,”
J. Biomech.
,
30
, pp.
147
153
.
5.
Cowin
,
S. C.
,
Sadegh
,
A. M.
, and
Luo
,
G. M.
,
1992
, “
An Evolutionary Wolff’s Law for Trabecular Architecture
,”
ASME J. Biomech. Eng.
,
114
, pp.
129
136
.
6.
Jacobs
,
C. R.
,
Simo
,
J. C.
,
Beaupre
,
G. S.
, and
Carter
,
D. R.
,
1997
, “
Adaptive Bone Remodeling Incorporating Simultaneous Density and Anisotropy Considerations
,”
J. Biomech.
,
30
, pp.
603
613
.
7.
Adachi
,
T.
,
Tomita
,
Y.
, and
Tanaka
,
M.
,
1999
, “
Three-Dimensional Lattice Continuum Model of Cancellous Bone for Structural and Remodeling Simulation
,”
JSME Int. J.
,
42
, pp.
470
480
.
8.
Mullender
,
M. G.
,
Huiskes
,
R.
, and
Weinans
,
H.
,
1994
, “
A Physiological Approach to the Simulation of Bone Remodeling as a Self Organization Control Process
,”
J. Biomech.
,
27
, pp.
1389
1394
.
9.
Huiskes
,
R.
,
Ruimerman
,
R.
,
Van Lenthe
,
G. H.
, and
Janssen
,
J. D.
,
2000
, “
Effects of Mechanical Forces on Maintenance and Adaptation of Form in Trabecular Bone
,”
Nature (London)
,
405
, pp.
704
706
.
10.
Sadegh
,
A. M.
,
Luo
,
G. M.
, and
Cowin
,
S. C.
,
1993
, “
Bone Ingrowth: An Application of the Boundary Element Method to Bone Remodeling at the Implant Interface
,”
J. Biomech.
,
26
, pp.
167
182
.
11.
Luo
,
G.
,
Cowin
,
S. C.
,
Sadegh
,
A. M.
, and
Arramon
,
Y. P.
,
1995
, “
Implementation of Strain Rate as a Bone Remodeling Stimulus
,”
ASME J. Biomech. Eng.
,
117
, pp.
329
338
.
12.
Adachi
,
T.
,
Tomita
,
Y.
,
Sakaue
,
H.
, and
Tanaka
,
M.
,
1997
, “
Simulation of Trabecular Surface Remodeling Based on Local Stress Nonuniformity
,”
JSME Int. J.
,
40
, pp.
782
792
.
13.
Feldkamp
,
L. A.
,
Goldstein
,
S. A.
,
Parfitt
,
A. M.
,
Jesion
,
G.
, and
Kleerekoper
,
M.
,
1989
, “
The Direct Examination of Three-Dimensional Bone Architecture In Vitro by Computed Tomography
,”
J. Bone Miner. Res.
,
4
, pp.
3
11
.
14.
Hollister
,
S. J.
, and
Kikuchi
,
N.
,
1994
, “
Homogenization Theory and Digital Imaging: A Basis for Studying the Mechanics and Design Principles of Bone Tissue
,”
Biotechnol. Bioeng.
,
43
, pp.
586
596
.
15.
Van Rietbergen
,
B.
,
Weinans
,
H.
,
Huiskes
,
R.
, and
Odgaard
,
A.
,
1995
, “
A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite-Element Models
,”
J. Biomech.
,
28
, pp.
69
81
.
16.
Mullender
,
M.
,
Van Rietbergen
,
B.
,
Ru¨egsegger
,
P.
, and
Huiskes
,
R.
,
1998
, “
Effect of Mechanical Set Point of Bone Cells on Mechanical Control of Trabecular Bone Architecture
,”
Bone
,
22
, pp.
125
131
.
17.
Parfitt
,
A. M.
,
1994
, “
Osteonal and Hemi-Osteonal Remodeling: The Spatial and Temporal Framework for Signal Traffic in Adult Human Bone
,”
J. Cell. Biochem.
,
55
, pp.
273
286
.
18.
Adachi
,
T.
,
Tanaka
,
M.
, and
Tomita
,
Y.
,
1998
, “
Uniform Stress State in Bone Structure With Residual Stress
,”
ASME J. Biomech. Eng.
,
120
, pp.
342
347
.
19.
Hollister
,
S. J.
,
Brennan
,
J. M.
, and
Kikuchi
,
N.
,
1994
, “
A Homogenization Sampling Procedure for Calculating Trabecular Bone Effective Stiffness and Tissue-Level Stress
,”
J. Biomech.
,
27
, pp.
433
444
.
20.
Ulrich
,
D.
,
Van Rietbergen
,
B.
,
Weinans
,
H.
, and
Ru¨egsegger
,
P.
,
1998
, “
Finite Element Analysis of Trabecular Bone Structure: A Comparison of Image-Based Meshing Techniques
,”
J. Biomech.
,
31
, pp.
1187
1192
.
21.
Ru¨egsegger
,
P.
,
Koller
,
B.
, and
Muller
,
R.
,
1996
, “
A Microtomographic System for the Nondestructive Evaluation of Bone Architecture
,”
Calcif. Tissue Int.
,
58
, pp.
24
29
.
22.
Van Rietbergen
,
B.
,
Odgaard
,
A.
,
Kabel
,
J.
, and
Huiskes
,
R.
,
1996
, “
Direct Mechanics Assessment of Elastic Symmetries and Properties of Trabecular Bone Architecture
,”
J. Biomech.
,
29
, pp.
1653
1657
.
23.
Hughes
,
T. J. R.
,
Ferencz
,
R. M.
, and
Hallquist
,
J. O.
,
1987
, “
Large-Scale Vectorized Implicit Calculations in Solid Mechanics on a Cray X-MP/48 Utilizing EBE Preconditioned Conjugate Gradients
,”
Comput. Methods Appl. Mech. Eng.
,
61
, pp.
215
248
.
24.
Carter
,
D. R.
,
1984
, “
Mechanical Loading Histories and Cortical Bone Remodeling
,”
Calcif. Tissue Int.
,
36
, pp.
S19–S24
S19–S24
.
25.
Huiskes
,
R.
,
Weinans
,
H.
,
Grootenboer
,
H. J.
,
Dalstra
,
M.
,
Fudala
,
B.
, and
Slooff
,
T. F.
,
1987
, “
Adaptive Bone-Remodeling Theory Applied to Prosthetic-Design Analysis
,”
J. Biomech.
,
20
, pp.
1135
1150
.
26.
Frost
,
H. M.
,
1988
, “
Structural Adaptations to Mechanical Usage: A Proposed ‘Three-Way Rule’ for Bone Modeling
,”
Veterinary Comparative Orthopaedics Traumatology
,
1
, pp.
7
17
.
27.
Tsubota, K., Adachi, T., and Tomita, Y., 2001, “Simulation Study on Model Parameters of Trabecular Surface Remodeling Model,” in: Computer Methods in Biomechanics & Biomedical Engineering—3, Middleton, J., Jones, M. L., Shrive, N. G., and Pande, G. N., eds., Gordon and Breach Science Publishers, pp. 129–135.
28.
Goldstein
,
S. A.
,
Matthews
,
L. S.
,
Kuhn
,
J. L.
, and
Hollister
,
S. J.
,
1991
, “
Trabecular Bone Remodeling: An Experimental Model
,”
J. Biomech.
,
24
, pp.
135
150
.
29.
Cowin
,
S. C.
,
1985
, “
The Relationship between the Elasticity Tensor and the Fabric Tensor
,”
Mech. Mater.
,
4
, pp.
137
147
.
30.
Guldberg
,
R. E.
,
Hollister
,
S. J.
, and
Charras
,
G. T.
,
1998
, “
The Accuracy of Digital Image-Based Finite Element Models
,”
ASME J. Biomech. Eng.
,
120
, pp.
289
295
.
31.
Laib
,
A.
, and
Ruegsegger
,
P.
,
1999
, “
Calibration of Trabecular Bone Structure Measurements of In Vivo Three-Dimensional Peripheral Quantitative Computed Tomography With 28-μm-Resolution Microcomputed Tomography
,”
Bone
,
24
, pp.
35
39
.
32.
Donahue
,
H. J.
,
McLeod
,
K. J.
,
Rubin
,
C. T.
,
Andersen
,
J.
,
Grine
,
E. A.
,
Hertzberg
,
E. L.
, and
Brink
,
P. R.
,
1995
, “
Cell-to-Cell Communication in Osteoblastic Networks: Cell Line-Dependent Hormonal Regulation of Gap Junction Function
,”
J. Bone Miner. Res.
,
10
, pp.
881
889
.
33.
Guldberg
,
R. E.
,
Caldwell
,
N. J.
,
Guo
,
X. E.
,
Goulet
,
R. W.
,
Hollister
,
S. J.
, and
Goldstein
,
S. A.
,
1997
, “
Mechanical Stimulation of Tissue Repair in the Hydraulic Bone Chamber
,”
J. Bone Miner. Res.
,
12
, pp.
1295
1302
.
34.
Xia
,
S.-L.
, and
Ferrier
,
J.
,
1992
, “
Propagation of a Calcium Pulse Between Osteoblastic Cells
,”
Biochem. Biophys. Res. Commun.
,
186
, pp.
1212
1219
.
35.
Hollister, S. J., Chu, T. M., Guldberg, R. E., Zysset, P. K., Levy, R. A., Halloran, J. W., and Feinberg, S. E., 1999, “Image Based Design and Manufacture of Scaffolds for Bone Reconstruction,” in: Synthesis in Bio Solid Mechanics, Pedersen, P., and Bendsoe, M. P., eds., Kluwer Academic Publishers, pp. 163–174.
You do not currently have access to this content.